流体力学习题总
[ 证明 ]
等位线的法线方向 — 梯度方向
∇ϕ=∇(r +r2 )=∇r +∇r2 1 1 r r = 1 + 2 = er1 +er2 ∇(r n )=nrn−2r r r2 1
er1 ⋅∇ϕ=er1 ⋅ (er1 +er2 )=1+er1 ⋅ er2 er2 ⋅∇ϕ=er2 ⋅ (er1 +er2 )=er2 ⋅ er1 +1
(∇×a)×b=(∇×ac )×b+(∇×a)×bc (∇×ac )×b=−∇(ac ⋅b)+ac (∇⋅b) =−ac×(∇×b)−(ac ⋅∇)b+ac (∇⋅b)
=−3a+axex +ayey +azez = −3a+a=−2a
(∇×a)×b = −a×(∇×b) −(a ⋅∇)b + a(∇⋅b) −b ×(∇×a)
(c⋅∇)(a×b)=(c⋅∇)(ac×b)+(c⋅∇)(a×bc )
=ac×(c⋅∇)b+[(c⋅∇)a]×bc
=a×(c⋅∇)b −b×(c⋅∇)a
习题一
十. 证明
(3)
(a ×b) ⋅ (∇× c) = b ⋅ (a ⋅ ∇)c − a ⋅ (b ⋅ ∇)c (a×b)⋅(∇×c)=(∇×c)⋅(ac×bc )=a⋅(b×(∇×c)) =a⋅(b×(∇×c)) =a⋅∇(bc ⋅c)−a⋅(b⋅∇)c
a⋅ P= P ⋅ a c
四. 若 (1) ) (2) ) [证] (1): 证 (2):
为对称张量,证明: P 为对称张量,证明: P= P c
b ⋅ (P ⋅ a) = a ⋅ (P ⋅ b)
P = pij = p ji = P c
b ⋅(P⋅ a) =bi ( pij a j ) =a j pijbi
bc × a = ei (bi c j ej × a) = bi ei (c j ej × a) = b(c × a)
(ω× I )⋅ a =(ω×ei )δij e j ⋅ ai ei
=(ω×ei )ei ⋅ ai ei =(ω×ei )ai =ω×a
(3) )
(a×P)c =[(a×ei ) pi ]c
b ⋅(P⋅ a) =bi ( pij a j ) =a j pijbi
= a j (− pc ) ji bi
= −a j [( pc ) ji bi ]
=−a ⋅(P ⋅b) c
利用并矢形式求证: 六. 利用并矢形式求证: (1) ) (2) )
P = pi ei c
a ⋅ P = P ⋅ a = ai pi c
b′ =α jibi j
ai bj 是张量 ai′b′ =αisα jt asbt j =αis asα jt bt ai 是矢量 a′b′ = a′α b i j i jt t ai′(b′ −α jt bt ) =0 j
考虑到
ai 的任意性: bi′ =αit bt =αijbj 的任意性:
求证:( :(1) 三. 求证:( ) (2) ) [证] (1): 证
= ey[−2(cy z−cz y)cz +2(cx y−cy x)cx ] = ez[2(cy z−cz y)cy −2(cz x−cx z)cx ]
2 2 + ey 2y(cz +cx +c2 )−ey 2cy (zcz +xcx + ycy ) y
2 2 + ez 2z(c2 +cx +cz )−ez 2cz (xcx + ycy +zcz ) y
=bc ⋅(a⋅∇)c−a⋅(b⋅∇)c
(a × ∇) × b = (a ⋅ ∇)b + a × (∇× b) − a(∇⋅ b)
(a×∇)×b=−a(∇⋅b)+∇(ac ⋅b)
(4)
=−a(∇⋅b)+a×(∇×b)+(a⋅∇)b
a×(∇×b)=∇(ac ⋅b)−(a⋅∇)b
∇(ac ⋅b)=a×(∇×b)+(a⋅∇)b
证明下列各式: 一. 证明下列各式:
2) (习题一 grad( ) = − )
1 r
r r3
grad (rn )=nrn−2r
1 1 1 grad(1)=ex ∂ ( )+ey ∂ ( )+ez ∂ ( ) r ∂x x2 + y2 +z2 ∂y x2 + y2 +z2 ∂z x2 + y2 +z2
习题一
十. 证明
(5)
(a × ∇) × r = −2a
(a×∇)×r =−a(∇⋅r)+∇(a⋅r ) ∂x +∂y +∂z )+∇(a x+a y+a z) =−a( x y z ∂x ∂y ∂z
(6)
(∇×a)×b = −(a ⋅∇)b −a×(∇×b) −b ×(∇×a) + a(∇⋅b)
= a j ( pc ) ji bi
= a j [( pc ) ji bi ]
=a⋅(P ⋅b) c
五. 若 (1) ) (2) ) [证] (1): 证 (2):
为反对称张量,证明: P 为反对称张量,证明: P = −P c
b ⋅(P⋅ a) = −a ⋅ (P⋅b)
P = pij = − p ji = −P c
及
P = ei pi
求证: 求证:
Q = qjej
P ⋅ Q = pik qkj
p11e1 + p12e2 + p13e3 pi = pij e j = p21e1 + p22e2 + p23e3 p31e1 + p32e2 + p33e3
grad c × r
习题一
2
= 2r (c ⋅ c ) − 2c (r ⋅ c )
的法线的几何方法, 六. 求作卵形线 r r2 =a2 的法线的几何方法,其中 r 及 r2 为动点至 1 1 的距离。 两焦点A 及B 的距离。 等位线的法线方向 — 梯度方向
[ 证明 ]
∇ϕ=∇(r r2 )=r ∇r2 +r2∇r 1 1 1
∂u ∂v gradϕ[u(r),v(r)]=ex ∂ ϕ[u,v]+ey ∂ ϕ[u,v]+ez ∂ ϕ[u,v] ∂x ∂y ∂y
∂ϕ ∂u ∂ϕ ∂v ∂ϕ ∂u ∂ϕ ∂v ∂ϕ ∂u ∂ϕ ∂v + ez = ex + + ey + + ∂u ∂y ∂v ∂y ∂u ∂x ∂v ∂x ∂u ∂z ∂v ∂z ∂ϕ ∂ϕ = (ex ∂u +ey ∂u +ez ∂u)+ (ex ∂v +ey ∂v +ez ∂v) ∂u ∂x ∂y ∂z ∂v ∂x ∂y ∂z
ai bi = a j bj =αij ai′bj =ai′αijbj ai′(bi′ −αijbj ) = 0
考虑到
ai 的任意性: 的任意性:
bi′ =αijbj
二. 若 ai bj 是一张量,ai 是矢量。 是一张量, 是矢量。 求证: 求证: bj 必为矢量。 必为矢量。 [证] 即证 证 即证:
grad(c⋅r )=grad(cx x+cy y+cz z) =ex ∂ (cx x+cy y+cz z)+ey ∂ (cx x+cy y+cz z)+ez ∂ (cx x+cy y+cz z) ∂x ∂y ∂z =excx +eycy +ezcz
4) (4) gradϕ[u(r),v(r)]=∂ϕ gradu+∂ϕ gradv
ab = (ba)c
a⋅ P = P ⋅a c
Qc =(ba)c = q ji =bj ai =ai bj = pij = P =ab
(2):
P=ab ⇒ pij = ai bj Q=ba ⇒ qij =bi a j
a ⋅ P = ai pij
P ⋅ a =( pc ) ji ⋅ ai = pij ai = ai pij c
2 2 = ex 2x(cz +c2 +cx )−ex 2cx ( ycy +zcz +xcx ) y
= ex[2(cz x−cx z)cz −2(cx y−cy x)cy ]
ex ∂ [(cy z−cz y)2 +(cz x−cx z)2 +(cx y−cy x)2 ] ∂x
ey ∂ [(cy z−cz y)2 +(cz x−cx z)2 +(cx y−cy x)2 ] ∂y
= r er2 +r2er1 1
r r2 1
ϕ=r r2 1
习题一
十. 证明
(1)
(V⋅∇)ϕ a=a(V⋅∇ϕ)+ϕ(V⋅∇)a
(V⋅∇)ϕ a=(V⋅∇)ϕca+(V⋅∇)ϕ ac
=ϕ(V⋅∇)a+a(V ⋅∇)ϕ =ϕ(V⋅∇)a+a(V⋅∇ϕ)
(2)
(c ⋅ ∇)(a × b) = a × (c ⋅ ∇)b − b × (c ⋅ ∇)a
七. 张量 P 和矢量 a的右向和左向矢积分别定义为: 的右向和左向矢积分别定义为:
P× a = ei ( pi × a)
和
a × P = (a × ei ) pi
求证:( ) 求证:(1) bc × a = b(c × a) :( (2) (ω × I ) ⋅ a = ω × a ) (3) (a × P)c = −(P × a) ) c [证] (1) 证 ) (2) )