当前位置:文档之家› 2022年新高考全国Ⅰ卷数学高考真题(附答案)

2022年新高考全国Ⅰ卷数学高考真题(附答案)

2022年普通高等学校招生全国统一考试数学本试卷共4页,22小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合{4},{31}M x N x x =<=≥∣,则MN =( )A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭2.若i(1)1z -=,则z z +=( ) A .2- B .1-C .1D .23.在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .236.记函数()sin (0)4f x x b πωω⎛⎫=++> ⎪⎝⎭的最小正周期为T .若23T ππ<<,且()y f x =的图象关于点3,22π⎛⎫⎪⎝⎭中心对称,则2f π⎛⎫= ⎪⎝⎭( ) A .1 B .32 C .52D .37.设0.110.1e ,ln 0.99a b c ===-,,则( ) A .a b c <<B .c b a <<C .c a b <<D .a c b <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知正方体1111ABCD A B C D -,则( )A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD所成的角为45︒10.已知函数3()1f x x x =-+,则( )A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线11.已知O 为坐标原点,点(1,1)A 在抛物线2:2(0)C x py p =>上,过点(0,1)B -的直线交C 于P ,Q 两点,则( ) A .C 的准线为1y =- B .直线AB 与C 相切 C .2|OP OQ OA ⋅>D .2||||||BP BQ BA ⋅>12.已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( ) A .(0)0f = B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=三、填空题:本题共4小题,每小题5分,共20分.13.81()y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为________________(用数字作答).14.写出与圆221x y +=和22(3)(4)16x y -+-=都相切的一条直线的方程________________.15.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.16.已知椭圆2222:1(0)x y C a b a b +=>>,C 的上顶点为A ,两个焦点为1F ,2F ,离心率为12.过1F 且垂直于2AF 的直线与C 交于D ,E 两点,||6DE =,则ADE 的周长是________________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<. 18.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++. (1)若23C π=,求B ; (2)求222a b c+的最小值.19.如图,直三棱柱111ABC A B C -的体积为4,1A BC 的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1A C 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.20.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,21.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0. (1)求l 的斜率; (2)若tan PAQ ∠=PAQ △的面积.22.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值. (1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.1.D 【分析】求出集合,M N 后可求M N ⋂. 【详解】1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:D 2.D 【分析】利用复数的除法可求z ,从而可求z z +. 【详解】 由题设有21i1i ii z -===-,故1+i z =,故()()1i 1i 2z z +=++-=, 故选:D 3.B 【分析】根据几何条件以及平面向量的线性运算即可解出. 【详解】因为点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-, 所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 4.C 【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出. 【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,ⅰ((66119140101801033V h S S =+=⨯⨯⨯+⨯'(()679933320109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C . 5.D 【分析】由古典概型概率公式结合组合、列举法即可得解. 【详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D. 6.A 【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 【详解】由函数的最小正周期T 满足23T ππ<<,得223πππω<<,解得23ω<<, 又因为函数图象关于点3,22π⎛⎫⎪⎝⎭对称,所以3,24k k Z ππωπ+=∈,且2b =,所以12,63k k Z ω=-+∈,所以52ω=,5()sin 224f x x π⎛⎫=++ ⎪⎝⎭,所以5sin 21244f πππ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭.故选:A 7.C 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】 方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111xf x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln099-<,故110ln ln 0.999>=-,即b c >, 所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 方法二:比较法 解:0.10.1a e =,0.110.1b =- , ln(10.1)c =-- ,ⅰ ln ln 0.1ln(10.1)a b -=+- , 令 ()ln(1),(0,0.1],f x x x x =+-∈则 1()1011x f x x x -'=-=<-- ,故()f x在 (0,0.1]上单调递减,可得 (0.1)(0)0f f <=,即 ln ln 0a b -< ,所以 a b < ; ⅰ 0.10.1ln(10.1)a c e -=+-,令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 1(1)(1)1()11x xxx x e g x xe e x x+--'=+---,令()(1)(1)1x k x x x e =+--,所以 2()(12)0x k x x x e '=-->,所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >>,即 ()0g x '> ,所以 ()g x 在(0,0.1]上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以.a c >故 .c a b << 8.C 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】ⅰ球的体积为36π,所以球的半径3R =,方法一:导数法设正四棱锥的底面边长为2a ,高为h , 则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.方法二:基本不等式法:由方法一故所以2231211(122)64(6)(122)[](333333h h h V a h h h h h h h-++==-=-⨯⨯=当且仅当4h =取到),当32h =时,得a 22min 11327;3324V a h ==⨯=当l =39322h =+=,a ==正四棱锥体积221119816433243V a h ==⨯=<,故该正四棱锥体积的取值范围是2764[,].439.ABD 【分析】数形结合,依次对所给选项进行判断即可. 【详解】如图,连接1B C 、1BC ,因为11//DA B C ,所以直线1BC 与1B C 所成的角即为直线1BC 与1DA 所成的角,因为四边形11BB C C 为正方形,则1B C ⊥1BC ,故直线1BC 与1DA 所成的角为90︒,A 正确;连接1A C ,因为11A B ⊥平面11BB C C ,1BC ⊂平面11BB C C ,则111A B BC ⊥, 因为1B C ⊥1BC ,1111A B B C B =,所以1BC ⊥平面11A B C ,又1AC ⊂平面11A B C ,所以11BC CA ⊥,故B 正确; 连接11A C ,设1111AC B D O =,连接BO , 因为1BB ⊥平面1111D C B A ,1C O ⊂平面1111D C B A ,则11C O B B ⊥, 因为111C O B D ⊥,1111B D B B B ⋂=,所以1C O ⊥平面11BB D D , 所以1C BO ∠为直线1BC 与平面11BB D D 所成的角, 设正方体棱长为1,则1C O =1BC 1111sin 2C O C BO BC ∠==, 所以,直线1BC 与平面11BB D D 所成的角为30,故C 错误;因为1C C ⊥平面ABCD ,所以1C BC ∠为直线1BC 与平面ABCD 所成的角,易得145C BC ∠=,故D 正确.故选:ABD 10.AC 【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D.【详解】由题,()231f x x '=-,令()0f x '>得x >x <令()0f x '<得x <<,所以()f x 在(,-∞,)+∞上单调递增,(上单调递减,所以x =是极值点,故A 正确;因(10f =>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥()0f x f ≥>⎝⎭,即函数()f x 在⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误. 故选:AC.11.BCD 【分析】求出抛物线方程可判断A ,联立AB 与抛物线的方程求交点可判断B ,利用距离公式及弦长公式可判断C 、D. 【详解】将点A 的代入抛物线方程得12p =,所以抛物线方程为2x y =,故准线方程为14y =-,A 错误;1(1)210AB k --==-,所以直线AB 的方程为21y x =-, 联立221y x x y=-⎧⎨=⎩,可得2210x x -+=,解得1x =,故B 正确;设过B 的直线为l ,若直线l 与y 轴重合,则直线l 与抛物线C 只有一个交点, 所以,直线l 的斜率存在,设其方程为1y kx =-,1122(,),(,)P x y Q x y ,联立21y kx x y=-⎧⎨=⎩,得210x kx -+=,所以21212Δ401k x x k x x ⎧=->⎪+=⎨⎪=⎩,所以2k >或2k <-,21212()1y y x x ==,又||OP ==,||OQ =所以2||||||2||OP OQ k OA ⋅>=,故C 正确;因为1|||BP x =,2|||BQ x =,所以2212||||(1)||15BP BQ k x x k ⋅=+=+>,而2||5BA =,故D 正确.故选:BCD 12.BC 【分析】法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】[方法1]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫-⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭ⅰ,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由ⅰ求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC.[方法2]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC. 故选:BC. [方法3]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确; 函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC. 【整体点评】法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解. 13.-28 【分析】()81y x y x ⎛⎫-+ ⎪⎝⎭可化为()()88y x y x y x +-+,结合二项式展开式的通项公式求解. 【详解】因为()()()8881=y yx y x y x y x x ⎛⎫-++-+ ⎪⎝⎭,所以()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中含26x y 的项为6265352688C 28y x y C x y x y x -=-, ()81y x y x ⎛⎫-+ ⎪⎝⎭的展开式中26x y 的系数为-28 故答案为:-2814.3544y x =-+或7252424y x =-或1x =- 【分析】先判断两圆位置关系,分情况讨论即可. 【详解】 解:方法一:显然直线的斜率不为0,不妨设直线方程为0x by c ,14.=故221c b =+ⅰ,|34||4|.b c c ++=于是344b c c ++=或344b c c ++=-,再结合ⅰ解得01b c =⎧⎨=⎩或247257b c ⎧=-⎪⎪⎨⎪=-⎪⎩或4353b c ⎧=⎪⎪⎨⎪=-⎪⎩, 所以直线方程有三条,分别为10x +=,724250x y --=,3450.x y +-=(填一条即可)方法二:设圆221x y +=的圆心(0,0)O ,半径为11r =, 圆22(3)(4)16x y -+-=的圆心(3,4)C ,半径24r =, 则12||5OC r r ==+,因此两圆外切,由图像可知,共有三条直线符合条件,显然10x +=符合题意; 又由方程22(3)(4)16x y -+-=和221x y +=相减可得方程3450x y +-=, 即为过两圆公共切点的切线方程,又易知两圆圆心所在直线OC 的方程为430x y -=, 直线OC 与直线10x +=的交点为4(1,)3--,设过该点的直线为4(1)3y k x +=+1=,解得724k =, 从而该切线的方程为724250.(x y --=填一条即可) 方法三:圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切, 如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-, 故答案为:3544y x =-+或7252424y x =-或1x =-.15.()(),40,-∞-+∞ 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】ⅰ()e x y x a =+,ⅰ(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e x k x a =++,切线方程为:()()()0000e 1e x xy x a x a x x -+=++-,ⅰ切线过原点,ⅰ()()()0000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,ⅰ切线有两条,ⅰ240a a ∆=+>,解得4a 或0a >,ⅰa 的取值范围是()(),40,-∞-+∞, 故答案为:()(),40,-∞-+∞ 16.13 【分析】利用离心率得到椭圆的方程为222222213412043x y x y c c c+=+-=,即,根据离心率得到直线2AF 的斜率,进而利用直线的垂直关系得到直线DE 的斜率,写出直线DE 的方程:x c =-,代入椭圆方程22234120xy c +-=,整理化简得到:221390y c --=,利用弦长公式求得138c =,得1324a c ==,根据对称性将ADE 的周长转化为2F DE △的周长,利用椭圆的定义得到周长为413a =. 【详解】ⅰ椭圆的离心率为12c e a ==,ⅰ2a c =,ⅰ22223b a c c =-=,ⅰ椭圆的方程为222222213412043x y x y c c c+=+-=,即,不妨设左焦点为1F ,右焦点为2F ,如图所示,ⅰ222AF a OF c a c ===,,,ⅰ23AF O π∠=,ⅰ12AF F △为正三角形,ⅰ过1F 且垂直于2AF的直线与C 交于D ,E 两点,DE 为线段2AF 的垂直平分线,ⅰ直线DE直线DE 的方程:x c =-,代入椭圆方程22234120xy c +-=,整理化简得到:221390y c --=,判别式()22224139616c c ∆=+⨯⨯=⨯⨯,ⅰ122264613cDE y =-==⨯⨯⨯=, ⅰ 138c =, 得1324a c ==,ⅰDE 为线段2AF 的垂直平分线,根据对称性,22AD DF AE EF ==,,ⅰADE 的周长等于2F DE △的周长,利用椭圆的定义得到2F DE △周长为222211*********DF EF DE DF EF DF EF DF DF EF EF a a a ++=+++=+++=+==.故答案为:13.17.(1)()12n n n a +=(2)见解析 【分析】(1)利用等差数列的通项公式求得()121133n nS n n a +=+-=,得到()23nn n a S +=,利用和与项的关系得到当2n ≥时,()()112133n n n n n n a n a a S S --++=-=-,进而得:111n n a n a n -+=-,利用累乘法求得()12n n n a +=,检验对于1n =也成立,得到{}n a 的通项公式()12n n n a +=;(2)由(1)的结论,利用裂项求和法得到121111211na a a n ⎛⎫+++=- ⎪+⎝⎭,进而证得. (1)ⅰ11a =,ⅰ111S a ==,ⅰ111Sa =, 又ⅰn n S a ⎧⎫⎨⎬⎩⎭是公差为13的等差数列,ⅰ()121133n nS n n a +=+-=,ⅰ()23nn n a S +=, ⅰ当2n ≥时,()1113n n n a S --+=,ⅰ()()112133n n n n n n a n a a S S --++=-=-,整理得:()()111n n n a n a --=+,即111n n a n an -+=-, ⅰ31211221n n n n n a a aa a a a a a a ---=⨯⨯⨯⋯⨯⨯()1341112212n n n n n n ++=⨯⨯⨯⋯⨯⨯=--, 显然对于1n =也成立, ⅰ{}n a 的通项公式()12n n n a +=; (2)()12112,11n a n n n n ⎛⎫==- ⎪++⎝⎭ⅰ12111na a a +++1111112121222311n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦18.(1)π6; (2)5. 【分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B+-,然后利用基本不等式即可解出.(1) 因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =; (2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B+++-== ()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos 2B =时取等号,所以222a b c +的最小值为5.19.【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC ⊥平面11ABB A ,建立空间直角坐标系,利用空间向量法即可得解. (1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h , 则111111112211433333A A BC A A ABC A ABC AB BC C C B V Sh h V S A A V ---=⋅===⋅==,解得h =所以点A 到平面1A BC (2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =, 且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC , 在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥, 又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE 12AA AB ==,1A B =2BC =, 则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1A C 的中点()1,1,1D , 则()1,1,1BD =,()()0,2,0,2,0,0BA BC ==, 设平面ABD 的一个法向量(),,m x y z =,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =-,设平面BDC 的一个法向量(),,n a b c =,则020n BD a b c n BC a ⎧⋅=++=⎨⋅==⎩,可取()0,1,1n =-, 则11cos ,22m n m n m n⋅===⨯⋅,所以二面角A BD C --=.20.(1)答案见解析(2)(i )证明见解析;(ii)6R =; 【分析】(1)由所给数据结合公式求出2K 的值,将其与临界值比较大小,由此确定是否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异;(2)(i) 根据定义结合条件概率公式即可完成证明;(ii)根据(i )结合已知数据求R . (1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯, 又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2) (i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅ 所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =, 所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅21.(1)1-;.【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP AQ k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积. (1)因为点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=. 易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx mx y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()222222Δ16422210120m k m k m k =-+->⇒-+>且≠k .所以由0AP AQ k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=, 即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭, 化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去, 故1k =-. (2)[方法一]:【最优解】常规转化不妨设直线,PA PB 的倾斜角为π,2αβαβ⎛⎫<< ⎪⎝⎭,因为0AP BP k k +=,所以παβ+=,由(1)知,212220x x m =+>,当,A B 均在双曲线左支时,2PAQ α∠=,所以tan 2α=2tan 0αα+=,解得tan α=(负值舍去) 此时P A 与双曲线的渐近线平行,与双曲线左支无交点,舍去; 当,A B 均在双曲线右支时,因为tan PAQ ∠=()tan βα-=tan 2α=-2tan 0αα-,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,)23241002x x ++-,因为方程有一个根为2,所以P x ,P y=同理可得,Q x =Q y= 所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离d = 故PAQ △的面积为11623⨯=. [方法二]:设直线AP 的倾斜角为α,π02α⎛⎫<< ⎪⎝⎭,由tan PAQ ∠=tan2PAQ∠,由2PAQ απ+∠=,得tan AP k α==1112y x -=-联立1112y x --221112x y -=得1x,1y同理,2x2y 12203x x +=,12689x x =而1||2|AP x =-,2||2|AQ x -,由tan PAQ ∠=sin PAQ ∠=故12121||||sin 2()4|2PAQ S AP AQ PAQ x x x x =∠-++【整体点评】(2)法一:由第一问结论利用倾斜角的关系可求出直线,PA PB 的斜率,从而联立求出点,P Q 坐标,进而求出三角形面积,思路清晰直接,是该题的通性通法,也是最优解;法二:前面解答与法一求解点,P Q 坐标过程形式有所区别,最终目的一样,主要区别在于三角形面积公式的选择不一样.22.(1)1a = (2)见解析 【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列. (1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=. 当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数, 当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数, 故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值, 故11ln ln a a a a-=-,整理得到1ln 1a a a-=+,其中0a >, 设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++, 故()g a 为()0,∞+上的减函数,而()10g =, 故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =. 综上,1a =. (2) 方法一:由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=. 当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>, 故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数, 所以()()min 010S x S b ==-<,而()e 0b S b --=>,()e 2bS b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=, 当01x <<时,()0T x '<,当1x >时,()0T x '>, 故()T x 在()0,1上为减函数,在()1,+∞上为增函数, 所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个解, 当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无根, 故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点, 则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2x h x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+, 所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122()e 3e 30e e eh =--<--<,故()h x ()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <, 当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点, 故()()001b f x g x ==>,此时e x x b -=有两个不同的根1010,(0)x x x x <<, 此时ln x x b -=有两个不同的根0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e 0x b x b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.方法二:由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==ⅰ1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意; ⅰ1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ⅰ1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-,所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x '='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增, 又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=->所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x 再次,证明存在b ,使得23:x x = 因为23()()0F x G x ==,所以2233ln xb e x x x =-=-,答案第25页,共25页 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=,所以只需证明2ln 0x e x x -+=在(0,1)上有解即可,即()2ln x x e x x ϕ=-+在(0,1)上有零点, 因为313312()30e e e e ϕ=--<,(1)20e ϕ=->, 所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可,此时取00x b e x =- 则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ======所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()x F x G e G x ==, 又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04x x e =, 又因为0002ln 0x e x x -+=,所以01400ln 2x x x e x x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.。

相关主题