当前位置:文档之家› 高中物理必修二检测:第六章第三节万有引力定律

高中物理必修二检测:第六章第三节万有引力定律

第六章万有引力与航天第二节太阳与行星间的引力第三节万有引力定律A级抓基础1.测定万有引力常量G=6.67×10-11 N·m2/kg2的物理学家是( ) A.开普勒B.牛顿C.胡克D.卡文迪许解析:牛顿发现了万有引力定律F=G Mmr2,英国科学家卡文迪许利用扭秤装置,第一次测出了引力常量G,引力常量G=6.67×10-11 N·m2/kg2.故D正确,A、B、C错误.答案:D2.(多选)下列说法中正确的是( )A.在探究太阳对行星的引力规律时,我们引用了公式F=mv2r,这个关系式实际上是牛顿第二定律,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了公式v=2πrT,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得来的C.在探究太阳对行星的引力规律时,我们引用了公式r3T2=k,这个关系式是开普勒第三定律,是可以在实验室中得到证明的D.在探究太阳对行星的引力规律时,我们使用的三个公式都是可以在实验室中得到证明的解析:开普勒的三大定律是根据行星运动的观察结果而总结归纳出来的规律.每一条都是经验定律,都是从观察行星运动所取得的资料中总结出来的.故开普勒的三大定律都是在实验室中无法验证的规律.答案:AB3.如图所示,两个半径分别为r1=0.60 m、r2=0.40 m,质量分布均匀的实心球质量分别为m1=4.0 kg、m2=1.0 kg,两球间距离为r0=2.0 m,则两球间相互引力的大小为( )A.6.67×10-11 N B.大于6.67×10-11 NC.小于6.67×10-11 N D.不能确定解析:运用万有引力定律公式F=G m1m2r2进行计算时,首先要明确公式中各物理量的含义,对于质量分布均匀的球体,r指的是两个球心间的距离,两球心间的距离应为r=r0+r1+r2=3.0 m.两球间的引力为F=G m1m2r2,代入数据可得引力约为2.96×10-11 N.故选项C正确.答案:C4.—个物体在地球表面所受的重力为G,在距地面高度为地球半径的位置,物体所受地球的引力大小为( )A.G2B.G3C.G4D.G9解析:在地球表面附近,物体所受的重力近似等于万有引力,即重力G=F万=GMmR2;在距地面高度为地球半径的位置,F′万=GMm(2R)2=G4,故选项C正确.答案:C5.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m,距地面高度为h,地球质量为M,半径为R,引力常量为G,则飞船所在处的重力加速度大小为( )A.0 B.GM (R+h)2C.GMm(R+h)2D.GMh2解析:对飞船由万有引力定律和牛顿第二定律,得GMm(R+h)2=mg′,解得飞船所在处的重力加速度g′=GM(R+h)2,B项正确.答案:BB级提能力6.设地球自转周期为T,质量为M,引力常量为G.假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为( )A.GMT2GMT2-4π2R3B.GMT2GMT2+4π2R3C.GMT2-4π2R3GMT2D.GMT2+4π2R3GMT2解析:在南极时物体受力平衡,支持力等于万有引力,即F N=G mMR2;在赤道上物体由于随地球一起自转,万有引力与支持力的合力提供向心力,即G mMR 2-F′N =mR 4π2T2,两式联立可知A 正确.答案:A7.如图所示,阴影区域是质量为M 、半径为R 的球体挖去一个小圆球后的剩余部分,所挖去的小圆球的球心和大球球心间的距离是R 2,小球的半径是R2,则球体剩余部分对球体外离球心O 距离为2R 、质量为m 的质点P 的引力为多少?解析:根据m =ρV=ρ·43πr 3知,挖去部分的半径是球体半径的一半,则挖去部分的质量是球体质量的18,即挖去部分的质量M′=18M.没挖之前,球体对质点的万有引力F 1=G Mm4R 2,挖去部分对质点的万有引力F 2=G M ′m ⎝ ⎛⎭⎪⎫5R 22=GMm50R 2,则球体剩余部分对质点的引力大小F =F 1-F 2=23GMm100R 2.答案:23GMm 100R 28.如图所示,火箭内平台上放有测试仪器,火箭从地面启动后,以g2的加速度竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为启动前压力的1718.已知地球半径为R ,求火箭此时离地面的高度(g 为地面附近的重力加速度).解析:火箭上升过程中,物体受竖直向下的重力和向上的支持力,设高度为h 时,重力加速度为g′.由牛顿第二定律得1718mg -mg′=m×g2,得g′=49g.①由万有引力定律知G MmR 2=mg ,②G Mm (R +h )2=mg′.③ 由①②③联立得h =R2.答案:R 29.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处(取地球表面重力加速度g =10 m/s 2,空气阻力不计).(1)求该星球表面附近的重力加速度g′的大小;(2)已知该星球的半径与地球半径之比为R星R地=14,求该星球的质量与地球质量之比M星M地.解析:(1)设初速度为v0,根据运动学公式可有t=2v0g,同理,在某星球表面以相同的初速度竖直上抛同一小球,经过时间5t小球落回原处,则5t=2v0 g′.由以上两式,解得g′=15g=2 m/s2.(2)在天体表面时,物体的重力近似等于万有引力,即mg=GMmR2,所以M=gR2G.由此可得,M星M地=g星g地·R2星R2地=15×142=180.答案:(1)2 m/s2(2)1∶80高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、单项选择题1.2018年12月8日2时23分,“嫦娥四号”探测器用“长征三号”乙运载火箭在西昌卫星发射中心点火升空,并于2019年1月3日成功实现月球背面软着陆,执行人类首次巡视月球背面的任务。

“嫦娥四号”飞到月球主要分四步走,第一步为发射入轨段,实现嫦娥四号升空入轨,器箭分离;第二步为地月转移段,实现嫦娥四号进入地月转移轨道;第三步为近月制动段,在地月转移轨道高速飞行的卫星减缓速度,完成“太空刹车减速”,被月球的引力所吸引;第四步为环月飞行段,嫦娥四号环绕月球轨道飞行,实现环月降轨,最后着陆月球。

关于“嫦娥四号”探测器,下列说法正确的是A.根据开普勒第三定律,探测器先后绕地球和月球做椭圆圆轨道运行时,其轨道半长轴的三次方与周期平方的比值是一个定值B.探测器在地球表面的发射速度应该大于第二宇宙速度C.探测器从环月段椭圆轨道进入环月段圆轨道时,探测器的动能减小,机械能减小D.若已知探测器在环月段圆轨道运行的半径R、周期T和引力常量G,可以求出月球的密度2.下列关于固体、液体和气体的说法正确的是A.固体中的分子是静止的,液体、气体中的分子是运动的B.液体表面层中分子间的相互作用力表现为引力C.固体、液体和气体中都会有扩散现象发生D.在完全失重的情况下,气体对容器壁的压强为零E. 某些固体在熔化过程中,虽然吸收热量但温度却保持不变3.汽车以15m/s的速度做匀速直线运动,发现前方有危险,立即刹车。

已知刹车的加速度大小为5m/s2,那么从开始刹车算起,第4s末的速度以及开始刹车后4s内汽车通过的位移下列描述正确的是( )A.v=-5m/s;x=20m B.v=0m/s;x=20mC.v=-5m/s;x=22.5m D.v=0m/s;x=22.5m4.真空中A、B、C三点构成边长为l的等边三角形,EF是其中位线,如图所示。

在E、F点分别放置电荷量均为Q的正、负点电荷。

下列说法正确的是A.A点的电场强度大小为B.A点的电势低于C点的电势C.B点的场强方向沿BC方向D.正电荷在B点的电势能大于在C点的电势能5.如图所示,顶端附有光滑定滑轮的斜面体静止在粗糙水平面上,三条细绳结于O点,一条绳跨过定滑轮平行于斜面连接物块P,一条绳连接小球Q,P、Q两物体处于静止状态,另一条绳OA在外力F作用下使夹角,现缓慢改变绳OA的方向至,且保持结点O位置不变,整个装置始终处于静止状态,下列说法正确的是()A.绳OA的拉力先增大后减小B.斜面对物块P的摩擦力的大小可能先减小后增大C.地面对斜面体有向右的摩擦力D.地面对斜面体的支持力等于物块P和斜面体的重力之和6.如图所示,长为L=5m的水平传送带以v0=6m/s逆时针匀速转动,质量m=1kg的物块以水平初速度v=4m/s 滑上传送带,物块与传送带间的动摩擦因数为0.2,不考虑传送带轮轴摩擦等能量损失,重力加速度g=10m/s2,则物块从滑上到离开传送带的过程中,下列说法正确的是()A.物块离开传送带时的速度大小为6m/sB.摩擦力对物块一直做负功C.物块所受摩擦力的冲量大小为0D.因摩擦产生的热量为48J二、多项选择题7.两列简谐横波的振幅都是20cm,传播速度大小相同.实线波的频率为2Hz,沿x轴正方向传播;虚线波沿x轴负方向传播.某时刻两列波相遇时的波形如图所示,则以下分析正确的是________A.虚线波的周期是为0.75sB.两列波在相遇区域会发生干涉现象C.从图示时刻起再经过0.25s,平衡位置为x=5m处的质点的位移y<0D.从图示时刻起至少再经过,平衡位置为x=6.25m处的质点位移达到最大E.平衡位置为x=6m处的质点在图示时刻速度为08.如图所示的圆形线圈共n匝,电阻为R,过线圈中心O垂直于线圈平面的直线上有A、B两点,A、B两点的距离为L,A、B关于O点对称,一条形磁铁开始放在A点,中心与A点重合,轴线与A、B所在直线重合,此时线圈中的磁通量为Φ1,将条形磁铁以速度v匀速向右移动,轴线始终与直线重合,磁铁中心到O点时线圈中的磁通量为Φ2,下列说法正确的是A.磁铁在A点时,通过一匝线圈的磁通量为B.磁铁从A到O的过程中,线圈中产生的平均感应电动势为E=C.磁铁从A到B的过程中,线圈中磁通量的变化量为2Φ1D.磁铁从A到B的过程中,通过线圈某一截面的电荷量为零9.如图所示,A、B是两盏完全相同的白炽灯,L是直流电阻不计、自感系数很大的自感线圈,如果断开电键S1,闭合S2,A、B两灯都能同样发光. 如果最初S1是闭合的,S2是断开的.那么不可能出现的情况是A.刚一闭合S2,A灯就亮,而B灯则延迟一段时间才亮B.刚闭合S2时,线圈L中的电流为零C.闭合S2以后,A灯变亮,B灯由亮变暗D.再断开S2时,A灯立即熄火,B灯先亮一下然后熄灭10.如图所示水平面上固定着倾角θ=30°的足够长的斜面,小球从A点无初速度释放,与斜面在B点发生碰撞。

相关主题