城市轨道交通智能化综合调度系统分析
摘要:本文旨在分析城市轨道交通智能化综合调度系统,主要介绍了供电系统的主变电站和牵引变电站的作用以及输入输出线的接线方式以及信号ATC系统的ATP、ATO、ATS系统的作用,实现城市轨道交通智能综合调度的电力调度、行车调度以及环境调度,从而确保轨道列车的安全性和可靠性。
关键词:城市轨道交通;供电系统;信号系统;电力调度、行车调度1.概述
随着国民经济的快速发展以及科学技术水平的不断提高,人们对于生活质量的追求也在不断提高,使得城市建设现代化进程不断加快,随之而来的城市交通问题也日益严重。
面对拥堵迟缓的交通状况,人们更青睐于方便快捷、安全准时的城市轨道交通。
如今,很多大城市都逐渐改变当前的交通状况,努力将城市轨道交通作为城市的主要的公共交通,以此来改变城市的交通状况,促进城市的经济发展。
由于城市轨道交通对于城市交通发展的重要性,其可靠性也显得越来越重要,如果调度出现了问题,轻则影响市民出行,重则发生严重事故,危及生命财产安全,所以必须要统一的综合调度系统来完成城市轨道交通的统一调度和指挥,来提升城市轨道交通行车和供电一体化的调度力度,来确保城市轨道交通的安全性和可靠性。
2.城市轨道交通智能化综合调度系统
城市轨道交通智能化综合调度系统,主要包括了电力调度系统以及行车调度系统,其中电力调度系统针对城市轨道交通的供电系统,是城市轨道交通的生命线,它为城市轨道交通的电力供应提供综合调度策略,行车调度系统针对城市轨道交通的信号系统,是城市轨道交通的大脑,它为城市轨道交通的行车控制提供综合调度方案。
2.1.供电系统
城市轨道交通的供电系统主要由主变电站、降压变电站、牵引变电站、馈电线、接触网等部分构成。
其中,主变电站的主要作用就是将城市内110KV的输电高压降成35KV高压,并将其配送至轨道交通沿线的各个牵引变电站,同时为了确保主变电站的可靠性,为主变电站安装两路以上的进线电源,以防止供电事故发生而影响一、二级的负荷供电。
一般的主变电站110KV进线端接线方式分为环进环出线路的变压器组接线方式和线路变压器组接线方式,通过两路不同源的110KV进线接线方式,确保了城市轨道交通的供电可靠性,同时也维持了城市轨道交通的电力调度的灵活性。
而主变压器的35KV的输出端一般采用单母线分段接线的方式,通过馈线开关直接配送至牵引变电站。
牵引变电站主要作用是将主变电站配送的35KV高压通过降压整流编程1500V的直流电,并通过馈电线接其传送至接触网,为轨道列车提供电能输出。
为了确保城市轨道列车供电可靠性,两个车站区域之间都会建设一座牵引变电站,如果局部牵引变电站发生故障,其他的牵引变电站也可以实现跨区域供电。
一般的,从主变电站到输出到牵引变电站输入采用的是两路35KV输电线,采用单母线环进环出的接线方式,而输出端则为1500V直流的单母线接线方式,引入4台直流高速开关以及楚王隔离闸刀,从而将电能输入上下行的接触网内,为城市轨道列车行驶提供电能输出。
2.2.信号系统
城市轨道列车能够安全可靠、准时高效地行驶和运营离不开城市轨道交通的信号系统,它是实现行车指挥、列车运行以及管理自动化的基础设备,也是构成现代化智能综合调度系统的重要标志。
只有一个安全完整高效、具有自动化水准的信号系统,才能实现城市轨道交通的短距离、高密度的不间断运营。
目前,我国城市轨道交通采用的信号系统是计算机实时控制的ATC(Automatic Train Control System)系统,它集合了自动化控制技术、计算机应用技术以及通信技术于一体,是城市轨道交通高度现代化智能化的体现。
ATC系统包括ATS列车自动监控系统、ATP列车超速防护系统以及ATO列车自动驾驶系统,从而实现了城市轨道交通运营的自动管理、自动控制、自动监督。
其中ATP(Automatic Train Supervision)主要由车载测试、测距设备,数据通信设备以及列车紧急制定系统等构成,从而通过测速测距设备实时采集列车运行速度以及与前方列车的距离,进而判断列车此时最佳的形式速度,配合紧急制动系统与数据通信系统,实现了列车之间的间隔保护以及列车最高形式速度的防护,避免严重的事故发生。
ATO 系统又称为ATO车载单元,列车车载单元与ATP系统相连,通过直接从列车车载单元接受工作数据来对列车进行控制,通过与ATS系统相连,接收地面信息,根据实际的线路情况来选择适当的列车驱动和制动曲线,从而实现了列车在正常情况下的自动驾驶。
ATS系统通过信息采集设备,对列车的运行状态以及线路设备的占用情况进行实时显示,为城市轨道交通的综合调度提供动态信息,从而进行城市轨道交通的实施监督控制。
随着科学技术的不断进步,城市轨道交通ATC系统会朝着网络化、信息化、系统化、智能化的方向发展,进而使城市轨道交通的综合调度系统更加先进可靠,为人们提供更加优质的服务。
3.城市轨道交通的综合调度
根据城市轨道交通的电力调度系统和行车调度系统,控制中心就可以对全线的城市轨道列车进行统一管理和指挥,从而实现对城市轨道列车的运行、电能供应等方面的统一调度和指挥。
城市轨道交通的控制中心的调度工作主要包括电力调度、行车调度以及环境调度。
控制中心的工作人员通过供电系统内的电力监控子系统对城市轨道交通的全线的变电站运行情况进行控制和监控,当供电系统发生异常或者事故警报时,工作人员就可以通过智能综合调度系统实现对供电设备的现代化、自动化的调度,从而提高城市轨道交通列车牵引供电的可靠性和安全性。
行车调度的主要依
据来源于综合调度系统中的信号系统,控制中心的工作人员通过信号系统的列车自动监控系统的计算机,即可完成对列车进入控制区、运行、出站、停靠等城市轨道列车行驶的调度指挥工作。
环境调度主要是智能综合调度系统利用现代化的自动控制技术来对车站内的空调、电梯、安全门、排给水、照明等设备的自动化管理和监控,以确保其能够正常工作,进而为轨道交通维护是以的温度、适度环境,为列车的安全运行奠定基础。
4.总结
城市轨道交通智能化综合调度系统主要是基于轨道列车的供电系统和信号系统,来为城市轨道列车提供综合调度,通过对供电系统的主变电站、牵引变电站以及信号系统ATP、ATO、ATS等系统的综合应用,实现城市轨道交通的综合控制和指挥,从而为人们创建一个安全高效、准时可靠的城市轨道交通。
参考文献
[1] 廉铭,江志彬. 城市轨道交通行车调度中存在的问题与对策[J]. 城市轨道交通研究. 2010(10)
[2] 张学兵,俞太亮,李广刚.地铁列车运行调整策略选择与制约因素分析[J]. 现代城市轨道交通. 2011(05)
[3] 刘炜,李群湛,陈民武.城市轨道交通交直流统一的牵引供电计算[J]. 电力系统保护与控制. 2010(08)
[4] 冯世杰.城市轨道交通综合管线设计体系的转变与更新[J]. 铁道标准设计. 2013(11)
[5] 何宗华.城市轨道交通运营管理的规范化[J]. 城市轨道交通研究. 2010(10)。