当前位置:文档之家› 河道水流和泥沙的一般特性

河道水流和泥沙的一般特性

D 25
河流动力学
细颗粒泥沙的物理化学特性
河流动力学
电化学性质
1、比表面积 :泥沙颗粒表面积与其体积之比
4D2/4 6 D3/6 D
(颗粒越细,该值越大) •比表面积的意义:反映泥沙颗粒的物化作用与重力作用的相对
大小, 越大,物化作用就越大
河流动力学
电化学性质
2、双电层及吸附水膜的特性 (1)细泥沙颗粒在含有电解质的水中, 颗粒周围会形成双电层、吸附水膜。 • 细泥沙颗粒表面带有负电荷,吸引反 离子,形成吸附层(固定层)+扩散层 • 细泥沙颗粒表面带有负电荷,同时也吸引水 分子形成粘结水+粘滞水=束缚水
河流动力学
泥沙的矿物成分与分类
泥沙的矿物成分
既然泥沙来源于岩石风化,则风化岩石的矿 物成分决定泥沙的矿物成分;不同的风化方 式对岩石矿物成分的影响程度不同,因此风 化方式也影响泥沙的矿物成分
物理风化、化学风化以及生物过程
矿物的物理性质
比重或密度:2.65 硬度:≧5,水轮机过流部件硬度一般≦5
河流动力学
泥沙的沉阵速度
沉降形式
泥沙在静止的清水中等速下沉时的速度,称为泥沙的 沉降速度,简称沉速
反映着泥沙在与水流相互作用时对运动的抗拒能力。 组成河床的泥沙沉速越大,则泥沙参与运动的倾向越 小
泥沙重度>水的重度,在水中的泥沙颗粒将受重力作 用而下沉。→→初始速度为零,抗拒下沉的阻力也为 零,有效重力起作用,泥沙颗粒的下沉具有加速度。 →→随着下沉速度的增大,阻力增大,终于使下沉速 度达到某一极限值。→→此时,泥沙所受的有效重力 和阻力恰恰相等,泥沙颗粒的继续下沉便以等速方式 进行
河流动力学
弯道环流图
图中,a为平面,b为 横剖面
河流动力学
河流泥沙的来源和组成
河流动力学
泥沙的来源
河流泥沙的最根本来源是岩石的风化 河流中运动着的泥沙,其来源主要包括流域地表的冲蚀和
河床的冲刷
风沙运动给河流带来的泥沙首先在规模上不如前二者;其次,从 广义的角度也可以归入流域地表的冲蚀;再者,风沙运动带来的 泥沙绝大部分属于冲泻质,对河流的冲淤影响较小
河流动力学
河流泥沙的几何特性
河流动力学
泥沙的粒径
泥沙的几何特性系指泥沙颗粒的形状和大小, 或者说泥沙颗粒的形状与粒径
泥沙的粒径
泥沙的粒径是泥沙颗粒大小的量度
所谓等容粒径,就是体积与泥沙颗粒相等的球体的 直径。设某一颗沙的体积为v,则其等容粒径为, 单位mm
d
( 6V
1
)3
河流动力学
等容粒径:与泥沙颗粒容积相当的球体直径
河流动力学
河流动力学
河流动力学
河流动力学
河流动力学
河流动力学
从流域地表侵蚀下来的泥沙,经过河流的 搬运作用,大部分汇流大海,但也有不少 沉积在低洼湖泊地带
我国几条大河的河口地区和洞庭湖、都阳湖 等大湖泊,都属于这样的堆积区
从流域地表冲蚀而来的泥沙数量,通常是 用每平方公里地面每年冲蚀若干吨泥沙来
由于构成泥沙的岩石成分不同.泥沙的容重 s 也不相 同,常以26kN/m3(国际单位)或2650kgf/m3(工程 单位)为代表值
α有效容重系数或有效密度系数
河流动力学
泥沙的干容重与干密度
沙样经100~l05℃温度烘干后,其重量与原状沙样整 个体积的比值,称为泥沙的干容重 ',单位为N/m3
流域地表的侵蚀与气候、土壤、地形地貌及人类活动等因 素有关
黄河中游的黄游地区,7~8月份降雨最多,且多为暴雨,其它条件 也较差,所以地表侵蚀最为严重;而在我国南部省份.虽然也有 暴雨,但土壤结构密实,植被覆被较好,所以其输沙量模数多在 1000t/(km2/a)以下
地形对流域的侵蚀,也起着重要的作用。坡度大则地面径流下渗 量小、汇流速度大,侵蚀作用也随之增大,侵蚀量也随坡长的增 大而增加
作为属于阻力平方区的时均流速U的表达式中 代表水流阻力效果的综合因素,它当然直接与 水流中的紊源和紊动结构有关,与大至河势, 小至河床床沙粒径有关
河流动力学
河道水流的运动特性
河流动力学
河道水流的流型、主副流及流速分布
河道水流的流型
河道水流的主流与副流
主流(又称正流、元生流)是水流沿着河槽总方向的 流动。它一般是在重力作用下产生的。在流动过 程中,水流的流线基本上是相互平行的,水流的 速度向量也是互相平行的,而且都平行于河槽的 轴线
和小于这一粒径的泥沙重量刚好相等
河流动力学
河流动力学
三、泥沙的空隙率
孔隙率:泥沙中孔隙的容积占沙样总容积的百分比称为孔隙率
• 泥沙孔隙率因沙粒的大小及均 匀度、沙粒的形状、沉积的情 况以及沉积后受力大小及历时 长短而有不同。 • 对各类泥沙孔隙率一般为
粗沙:的孔隙率39%~40%, 中沙:41%-48%, 细沙:44%—49%。
明槽主要是粗糙边壁附近小尺度的紊动,由大、中、 小尺度构成的紊动结构虽不能完全排除,但不占主导 地位
河道水流,根据张瑞理的研究,紊源除了普通意义的 粗糙边壁外,还包括河势、河相、成型淤积体、河底 或河岸的大凸大凹、沙纹及沙波等,这些紊源的尺度 是边壁粗糙完全不能比拟的
河流动力学
因此对于河道水流,“糙率系数”n的内含 应该是极为复杂的
河流动力学
(2)双电层的电位变化
•泥沙颗粒表面带负电荷后,就有一定的电位值,此电位值 与扩散层外的自由电位之差称为热力学电位,或ψ0电位。 •在吸附层内,电位线性降落,所剩余的电位差,即吸附层 与扩散层交界面的电位与扩散层外自由电位之差称为电动 电位,或ζ电位。 •ζ电位的数值及双电层的厚度与水中电解质的离子浓度及价数有关。
河流动力学
河流泥沙的分类
矿物分、运动方式分类以及粒径分类 我国泥沙分类的分界数字为:200—20—2—1/20—
1/200(即200—20—2—0.5—0.005)
河流动力学
泥沙的粒径大小与泥沙的水力学特性与物理化 学特性有着密切的关系
不同粒径级的颗粒所形成的土壤具有不同的力学性 质
不同粒径级的颗粒具有不同的矿物组成 不同粒径级的颗粒具有不同的物理化学特性
有多家过渡区泥沙沉降时的阻力规律和沉降速度公式, 本课程介绍张瑞瑾公式
河流动力学
河流动力学
河流动力学
河流动力学
河流动力学
衡量,称为侵蚀模数,也称输沙量模数。
下图为我国输沙量模数分布情况
河流动力学
河流动力学
泥沙随水流汇集到河流之中,加上河床上 泥沙被水流冲刷起来,使得河道水流中含 有一定数量的泥沙,常以每单位体积河水 中的泥沙重量表示河流的含沙量。一般来 说,我国北方,特别是黄河中游的一些干 支流,年平均含沙量有些高达300 kg/m3 以上;而在南方一些省份,年平均含沙量 不足1kg/m3,这样的分布状况,是与我 国各地区的水土流失程度紧密相关的。下 表是我国及国外一些主要河流水沙特征值 的统计资料。附表
当大R的e紊d较动大状时态(约下大沉于,1附00近0)的,水泥体沙产颗生粒强脱烈离的铅绕垂动线和.涡以动极 ,这时的运动状态属于紊动状态
当态R为e过d介渡于状0态.5到1000之间时,泥沙颗粒下沉时的运动状
河流动力学
河流动力学
球体的沉速
单颗粒圆球在无限水体中等速下沉时,其沉降可 看做对称绕流运动,则绕流阻力的一般表达式为,
因产生的原因不同,具有不同的轴向
河流动力学
河道水流的流速分布
河流动力学
河流动力学
河道水流中环流结构
因产生原因的不同,环流可以分为因离心 力产生的弯道环流、因柯里奥里 (G.Criorid)力而产生的环流、因水流与 固体周界分离而产生的环流等等。
水流在弯道内作曲线运动的时候,必然产 生指向凹岸的离心力。水流为了平衡这个 力。通过调整,使得凹岸的水面升高,凸 岸方向的水面降低,从而形成横比降
泥沙在静水中下沉时,从加速到等速所经历的时间是
十分短暂的:3mm,1/10s;1mm,1/20s
河流动力学
泥沙颗粒在静水中下沉时的运动状态与沙粒雷诺数
有关
Red
d
式中d和ω分别为泥沙的粒径及沉速。υ为水的运动粘滞性
系数
当沙R颗e粒d较基小本时上(沿约铅小垂于线0下.5)沉运,动附状近态的属水于体滞几性乎状不态发,生泥紊 乱现象
粒配曲线可直接表现 泥沙沙样粒径的大小 和沙样的均匀程度
Ⅱ代表较细的沙样 Ⅰ代表较均匀的沙样
河流动力学
从粒配曲线上,可以查出
小于某粒径的泥沙在总沙样中占的重量百分数 在总沙样中占某重量百分数的泥沙的上限粒径 后者通常以重量百分数为脚标,附注在粒径的
右下角,表示该上限粒径如d5、d20、d50、d90等 d50称为中值粒径,它表示在全部沙样中,大于
河道水流和泥沙的一般特性
河道水流的一般特性
河流动力学
河道水流的基本特性
天然河道中的水流属于明渠流,在很多情 况下可以沿用水力学中明渠流的有关结果
二相流特性 三维性 不恒定性 非均匀性
河流动力学
河道水流中的阻力
明渠二维水流的阻力损失
河流动力学
河道水流阻力损失
与水力学中顺直管道和棱柱体明槽水流中发生的紊动 相比,河道水流的紊动在尺度、紊源上要复杂得多
•黄河的河漫滩沉积物就因 孔隙率的不同而有“铁板抄” 与“晃滩沙”的区别。
河流动力学
通常泥沙的平均粒径与中值粒径直并不相等。二 者之间的关系应为
2
d pj d50e 2
关于沙样的均匀程度,常采用如下形式的非均匀 系数或称拣选系数
非均匀系数等于1,则沙样均匀;愈大于1,则越不均 匀
D 75
河流动力学
河道水流的主流与副流
副流与主流不同是由于纵比降以外的其它因素所促成 的
副流实际是在水流内部产生的一种大规模的水流旋转 运动。它可以因重力作用而引起,也可在其它的力(内 力或外力)作用下产生。
相关主题