当前位置:文档之家› 镁合金表面防腐蚀处理研究

镁合金表面防腐蚀处理研究

镁合金表面防腐蚀处理研究王芬,康志新,李元元(华南理工大学金属新材料制备与成型重点实验室,广东广州510640)摘要:综述了近年来镁合金表面防腐蚀处理的方法,主要有化学转化膜、阳极氧化、金属涂层、有机涂层、有机镀膜、气相沉积、快速凝固等,并对镁合金表面处理的发展方向进行了探讨。

关键词:镁合金;腐蚀;金属涂层;阳极氧化;有机镀膜1前言镁合金优异的物理和机械性能[1]使其近年来得到广泛关注。

镁合金具有较高的比强度和比刚度,较强的电磁屏蔽和抗辐射能力,以及良好的减震性、切削加工性能等特点,在汽车、摩托车等交通工具,3C产品、航空航天、兵器工业等领域的应用日趋广泛。

但是镁是一种电负性极强的金属,标准电极电位为-2.37V,在潮湿,CO2,SO2,Cl-的环境里极易发生腐蚀。

除此之外,镁合金由于杂质元素和合金元素的存在,还容易产生电偶腐蚀、应力腐蚀开裂以及腐蚀疲劳[2],大大限制了镁合金在工业、军工等领域的广泛应用。

目前国内外都加大了对镁合金腐蚀问题的研究,以期通过有效的表面处理方法来提高镁合金表面的抗腐蚀能力,使其能够在不同的领域得到更为广泛的应用。

本文综述了镁合金表面处理的方法,并对各种表面处理方法的优缺点及今后的发展方向进行了分析。

2镁合金表面处理的方法2.1化学转化膜处理镁合金化学转化膜[3]的防腐蚀效果优于自然氧化膜,并且化学转化膜可提供较好的涂装基底。

传统的化学转化法是铬化处理,其机理是金属表面的原子溶于溶液后,引起金属表面的pH值上升,在金属表面沉积铬酸盐与金属胶状物的混合物的过程,这种混合物在未失去结晶水时具有自修复功能,因而耐蚀性好。

但由于铬酸盐处理工艺中含Cr6+离子,对环境造成污染且废液的处理成本高,现已被其它的化学转化膜法所取代,如磷酸-高锰酸钾转化膜、稀土转化膜等。

磷酸-高锰酸钾转化膜处理方法主要是在镁合金表面形成以Mg3(PO4)2为主的组成物,同时含有铝、锰等化合物的磷化膜。

经过该处理所得的膜层为微孔结构且与基体结合牢固,并具有良好的吸附性、耐蚀性,因而可作为镁合金涂装中的底漆层使用。

赵明[4]等人对镁合金磷酸盐-高锰酸盐化学转化处理工艺进行了研究,发现pH值为4,K2HPO4的质量浓度为150g/L,KMnO4的质量浓度为40g/L的处理液能显著提高镁合金表面的耐腐蚀性能。

在盐雾试验温度为30℃,盐雾沉积率为0.0138mL/(cm2·h)的条件下,连续喷雾24h后,镁合金表面所得膜的腐蚀率为8%,而铬酸盐处理工件表面腐蚀率为21%[5]。

这说明镁合金磷酸盐-高锰酸盐化学转化处理能提高镁合金表面抗蚀能力。

Rudd[6]等研究发现镁及镁合金在经过pH值为8.5的铈、镧和镨等稀土盐溶液浸泡处理后,可以显著提高镁及其合金的表面耐腐蚀性能。

但随着浸泡时间过长,涂层的保护性能开始恶化,导致镁合金表面的耐腐蚀性能也随之降低。

因此,为了得到较好的表面处理效果,在形成稀土转化膜后应立即进行封孔处理。

2.2阳极氧化处理阳极氧化处理[7~9]是镁合金现今应用较广的一种表面处理方法。

阳极氧化不同于化学氧化,它是通过电化学反应,在金属表面得到具有一定厚度、稳定的氧化膜层,从而提高金属表面耐腐蚀性能。

DOW17法和HAE法是20世纪50年代开发的阳极氧化技术。

DOW17法生成的氧化膜是由Cr2O3,MgCr2O3及Mg2FPO4构成,该氧化膜的耐蚀性和耐磨性好,但脆性较大。

用HAE法制成的氧化膜是由MgO与MgAl2O4构成,膜层坚硬,耐磨性好,进一步喷漆后盐雾试验可达到500h。

但这两种工艺都含有剧毒的六价铬离子,含铬的化合物对环境和人类健康都有着不同程度的危害。

因此,目前各国着力于研制一种环保型的电解液用于镁合金的阳极氧化。

德国AHC 公司开发的MAGOXID-COAT工艺是一种硬质阳极氧化工艺,该工艺通过电解液的等离子体反应在金属表面形成陶瓷质膜层,膜层由MgAl2O4和来自电解液的一些化合物组成,膜层硬度较高,耐磨性好,对基体黏附性能好,且有很好的电绝缘性能,击穿电压约为600V。

东南大学的戎志丹[11]等人采用直流阳极氧化工艺研究了一种新型无铬环保镁合金阳极氧化配方及工艺。

其使用的镀液由NaOH,Na3PO4,KF,铝盐和适量添加剂组成。

结果表明,氧化膜主要由MgO和MgAl2O4组成。

该环保型阳极氧化新工艺所获得的膜层的耐腐蚀性能等级为9级,优于传统的HAE工艺(8级),因而能够对AZ31镁合金提供更有效地腐蚀防护。

等离子微弧阳极氧化[12]是对阳极氧化工艺的继承和发展。

等离子微弧阳极氧化在阳极区产生等离子微弧放电,微弧氧化电压[13]在140V~220V之间,火花放电短时间(1s~2s)里使金属表面局部温度升高至1000℃以上,从而使氧化物熔覆在镁合金表面,形成陶瓷质的阳极氧化膜,大大提高了普通阳极氧化膜的硬度和致密性。

因此等离子体微弧阳极氧化比普通阳极氧化膜的耐蚀性和抗磨性均有提高。

薛文彬[14]等在浓度为10g/L的NaAl2O3溶液中用30kW的等离子微弧氧化装置对镁合金MB15进行2h的微弧阳极氧化处理,对氧化膜分析发现,基材表面中的Zn元素会进入溶液,而溶液中的Al元素参与化学反应并进入氧化膜内,在膜表面形成贫Zn富Al层。

将处理过的样品在0.1%的H2SO4溶液中浸泡4h后,白色氧化膜开始出现腐蚀坑,而未处理的镁合金放入同一溶液中几秒钟后就出现明显的析氢腐蚀。

这表明镁合金经微弧阳极氧化处理后耐蚀性得到较大的提高。

2.3金属涂层处理化学镀是在镁合金表面制备金属涂层的常用方法。

该方法制备的金属涂层是通过溶液中的金属阳离子还原为金属原子沉积于镀件表面来实现的,其中反应所需的电子由基体金属直接提供。

其优点有:可以在形状复杂的样品,特别在孔洞及深凹处制备厚度比较均匀的镀层。

目前已应用于镁合金的化学镀层主要有Cu/Ni/Cr,Ni/Au,化学镀镍等[15,16]。

化学镀镍是近年来应用广泛的一种方法。

化学镀镍主要有浸锌法和直接化学镀镍2种。

浸锌法其工艺流程与电镀相同,其工艺过程为:表面处理-活化-浸锌-镀铜-化学镀镍/电镀,但其工艺复杂,镀液中含有CuCN,KCN,NaCN等毒性较大的物质,易对环境造成污染。

直接化学镀镍是通过还原剂将水溶液中的镍离子催化还原为金属镍并沉积到零件表面的方法。

直接化学镀镍法工艺简单、毒性小、废水处理容易,而且镀层的结合性能较好。

玄兆丰等人对AZ91D[17]镁合金进行了直接化学镀镍工艺的研究。

工艺流程为:制样-超声波清洗-碱洗-水洗-酸洗-水洗-活化-水洗-化学镀镍-水洗-烘干。

生成的化学镀镍层经显微硬度测试,镀层HV硬度为5500MPa~6000MPa,在经过300h连续喷雾的中性盐雾试验检验后,镀层未出现腐蚀斑点,表明镀层具有良好的耐蚀性,为镁合金基体提供了良好的保护。

此外,热喷涂也是在镁合金表面制备金属涂层的一种方法。

热喷涂是通过火焰、电弧或等离子体等热源,将线状或粉状的材料加热至熔化或半熔化状态,随后将其形成高速熔滴,喷射于镁合金基体表面,经过冷却后,在表面形成金属涂层。

该方法可以对镁合金表面进行强化,从而提高镁合金表面耐磨和耐腐蚀性能。

常用的镁合金表面热喷涂处理方法有表面热喷涂铝、喷涂纳米和陶瓷涂层材料等。

2.4有机涂层处理有机涂层[8]也是一种镁合金防腐蚀的重要方法。

有机涂层的种类很多,如油或油脂能在短时间内保护镁合金;环氧树脂涂层由于具有很强的黏附力,与水不发生浸湿,并且强度高,从而应用较为广泛。

尽管有机涂层的品种很多,操作简单,适应范围较广,是一种较为经济的镁合金表面处理方法。

但是,一般比较薄(厚度小于1 µm)、有孔隙、机械性能差,在强腐蚀介质、冲刷、冲击、腐蚀、高温下容易脱落,因此,只能在短时间内对镁合金进行保护。

粉末涂层[18]也是有机涂层的一种。

该方法首先将添加颜料的树脂涂层粉末涂于基体表面,然后加热使其聚合熔合形成匀、无孔的膜层。

由于环保,操作简单,并能在粗糙表面形成均匀的厚度的膜层,同时涂层材料损失很小,且可使用不溶于有机溶剂的树脂作为涂层粉末,故可作为涂漆工艺的理想替代涂层。

镁基体上得到的环氧基粉末涂层在盐雾试验和腐蚀循环试验中表现出良好的耐腐蚀性能。

2.5有机镀膜森邦夫等研究开发的有机镀膜技术[19~21],是一种赋于金属材料表面多功能化和高性能化的有效方法[22,23]。

该方法采用三电极工作方式,镀液为含有特殊功能基团的三氮杂嗪硫醇类有机化合物水溶液,在施加一定的电流或电压和较短时间的条件下,有机化合物单体在镁合金表面通过电化学反应生成纳米级厚度的有机功能薄膜,从而对镁合金表面进行改性。

由于该有机薄膜是通过三氮杂嗪类有机物中所含的功能基团与镁合金表面反应生长并相互聚合增厚得到,且该薄膜生长致密、排列有序,因而经有机镀膜处理后的镁合金表面具有良好的抗腐蚀性能。

此外,由于镀液为功能基团可选的三氮杂嗪硫醇类有机材料,因而可以通过选择不同的功能基团(如疏水、亲水),达到镁合金表面多功能化改性。

2.6物理气相沉积物理气相沉积(Physical Vapor Deposition,简称PVD)[24]是在真空条件下,采用各种物理方法,将固态的镀料转化为原子、分子或离子态的气相物质后,沉积于基体表面,形成固体薄膜的过程。

按沉积薄膜气相物质的生成方式和特征可以将其分为真空蒸镀、溅射镀膜和离子镀膜3种。

中国科学院金属研究所霍宏伟等人[25]尝试通过磁控溅射的方法对AZ91D镁合金表面进行改性。

试验选用纯Al材料作为靶材,试验采用氩气压力为0.2Pa,功率15kW,基体温度300℃,溅射时间1.5h。

然而由于AZ91D镁合金和Al之间的线性热膨胀系数的差异,溅射Al薄膜层与镁合金表面的结合力并不理想。

Senf等[26]用PVD的方法在AZ91镁合金表面沉积了Cr和CrN的多层膜。

结果表明,这些膜层解决了膜层与基体结合力和耐磨性的问题,但是由于制得的膜层具有较多的孔洞,而导致表面的防腐能力较差。

日本工业大学的Yamamoto A等人[27]通过在镁合金表面沉积纯镁材料以提高其耐蚀性能。

纯度为99.9%的镁作为挥发源置于高于770K的温度区域内,3N-Mg合金作为基体置于530K 的温度范围内。

在1×10-1Pa的真空下进行32.4ks时间的气相沉积。

实验完成后将其置于温度300K,1%NaCl溶液中进行盐雾腐蚀测试173ks。

结果发现,经过气相沉积的3N-Mg 质量减少了4mg/cm2,而未处理的镁的质量减少了28mg/cm2。

同时处理后的表面只有轻微变暗,而未处理的表面却遭受到了严重腐蚀。

此外,Yamamoto A等人对在AZ31,AZ91E等合金上沉积3N-Mg,4N-Mg和6N-Mg的过程进行了研究[28~30],并分别进行了盐雾试验。

相关主题