当前位置:文档之家› (小专题)天体运动中的“四大难点”

(小专题)天体运动中的“四大难点”

教师备课手册教师姓名学生姓名填写时间学科物理年级上课时间课时计划2h教学目标教学内容个性化学习问题解决教学重点、难点教学过程第6课时(小专题)天体运动中的“四大难点”突破一近地卫星、赤道上物体及同步卫星的运行问题近地卫星、同步卫星和赤道上随地球自转的物体的三种匀速圆周运动的比较1.轨道半径:近地卫星与赤道上物体的轨道半径相同,同步卫星的轨道半径较大,即r同>r 近=r物。

2.运行周期:同步卫星与赤道上物体的运行周期相同。

由T=2πr3GM可知,近地卫星的周期要小于同步卫星的周期,即T近<T同=T物。

3.向心加速度:由GMmr2=ma知,同步卫星的加速度小于近地卫星的加速度。

由a=rω2=r⎝⎛⎭⎪⎫2πT2知,同步卫星的加速度大于赤道上物体的加速度,即a近>a同>a物。

4.动力学规律(1)近地卫星和同步卫星满足GMmr2=mv2r=mω2r=ma。

(2)赤道上的物体不满足万有引力充当向心力即GMmr2≠mv2r。

【典例1】(多选)地球同步卫星离地心的距离为r,运行速率为v1,加速度为a1,地球赤道上的物体随地球自转的向心加速度为a2,地球的第一宇宙速度为v2,半径为R,则下列比例关系中正确的是()A.a1a2=rR B.a1a2=(rR)2C.v1v2=rR D.v1v2=Rr解析 设地球质量为M ,同步卫星的质量为m 1,在地球表面绕地球做匀速圆周运动的物体的质量为m 2,根据向心加速度和角速度的关系有a 1=ω21r ,a 2=ω22R ,又ω1=ω2,故a 1a 2=r R ,选项A 正确;由万有引力定律和牛顿第二定律得G Mm 1r 2=m 1v 21r ,G Mm 2R 2=m 2v 22R ,解得v 1v 2=Rr ,选项D 正确。

答案 AD 【变式训练】1.(2014·江西鹰潭市高三第二次模拟考试)有a 、b 、c 、d 四颗卫星,a 还未发射,在地球赤道上随地球一起转动,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,设地球自转周期为24 h ,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图1所示,则下列关于卫星的说法中正确的是( )图1A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角为π6C .b 在相同的时间内转过的弧长最长D .d 的运动周期可能是23 h解析 在地球赤道表面随地球自转的卫星,其所受万有引力提供重力和其做圆周运动的向心力,a 的向心加速度小于重力加速度g ,选项A 错误;由于c 为同步卫星,所以c 的周期为24 h ,因此4 h 内转过的圆心角为θ=π3,选项B 错误;由四颗卫星的运行情况可知,b 运动的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C 正确;d 运行的周期比c 要长,所以其周期应大于24 h ,选项D 错误。

答案 C突破二卫星的变轨问题1.卫星变轨的原因(1)由于对接引起的变轨(2)由于空气阻力引起的变轨2.卫星变轨的实质(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GM r可知其运行速率比原轨道时减小。

(2)当卫星的速率突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GM r可知其运行速率比原轨道时增大。

卫星的发射和回收就是利用这一原理。

【典例2】(多选)在发射一颗质量为m的人造地球同步卫星时,先将其发射到贴近地球表面运行的圆轨道Ⅰ上(离地面高度忽略不计),再通过一椭圆轨道Ⅱ变轨后到达距地面高为h的预定圆轨道Ⅲ上。

已知它在圆形轨道Ⅰ上运行的加速度为g,地球半径为R,图2中PQ长约为8R,卫星在变轨过程中质量不变,则()图2A.卫星在轨道Ⅲ上运行的加速度为(hR+h)2gB.卫星在轨道Ⅲ上运行的线速度为v=gR2 R+hC.卫星在轨道Ⅲ上运行时经过P点的速率大于在轨道Ⅱ上运行时经过P点的速率D.卫星在轨道Ⅲ上的动能大于在轨道Ⅰ上的动能第一步:抓住信息→构建运动模型读题看图――→提取信息①Ⅰ、Ⅲ是圆形轨道②Ⅱ是椭圆轨道――→建模①卫星在轨道Ⅰ、Ⅲ上做匀速圆周运动②卫星在轨道Ⅱ上做变速曲线运动第二步:找突破口→理清思路解析 设地球质量为M ,由万有引力提供向心力得在轨道Ⅰ上有G MmR 2=mg ,在轨道Ⅲ上有G Mm (R +h )2=ma ,所以a =(R R +h )2g ,A 错;又因a =v 2R +h,所以v =gR 2R +h,B 对;卫星由轨道Ⅱ变轨到轨道Ⅲ需要加速做离心运动,即满足GMm r 2<m v 2r ,所以卫星在轨道Ⅲ上运行时经过P 点的速率大于在轨道Ⅱ上运行时经过P 点的速率,C 对;尽管卫星从轨道Ⅰ变轨到轨道Ⅲ要在P 、Q 点各加速一次,但在圆形运行轨道上v =GMr ,所以由动能表达式知卫星在轨道Ⅲ上的动能小于在轨道Ⅰ上的动能,D 错。

答案 BC解题模板【变式训练】2.(多选)如图3是“嫦娥三号”飞行轨道示意图。

假设“嫦娥三号”运行经过P 点第一次通过近月制动使“嫦娥三号”在距离月面高度为100 km 的圆轨道Ⅰ上运动,再次经过P 点时第二次通过近月制动使“嫦娥三号”在距离月面近地点为Q 、高度为15 km ,远地点为P 、高度为100 km 的椭圆轨道Ⅱ上运动,下列说法正确的是( )图3A .“嫦娥三号”在距离月面高度为100 km 的圆轨道Ⅰ上运动时速度大小可能变化B .“嫦娥三号”在距离月面高度100 km 的圆轨道Ⅰ上运动的周期一定大于在椭圆轨道Ⅱ上运动的周期C .“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的加速率一定大于经过P 点时的加速度D .“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的速率可能小于经过P 点时的速率 解析 “嫦娥三号”在距离月面高度为100 km 的圆轨道上运动是匀速圆周运动,速度大小不变,选项A 错误;由于圆轨道的轨道半径大于椭圆轨道半长轴,根据开普勒定律,“嫦娥三号”在距离月面高度100 km 的圆轨道Ⅰ上运动的周期一定大于在椭圆轨道Ⅱ上运动的周期,选项B 正确;由于在Q 点“嫦娥三号”所受万有引力大,所以“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的加速度一定大于经过P 点时的加速度,选项C 正确;“嫦娥三号”在椭圆轨道上运动的引力势能和动能之和保持不变,Q 点的引力势能小于P 点的引力势能,所以“嫦娥三号”在椭圆轨道Ⅱ上运动到Q 点的动能较大,速度较大,所以“嫦娥三号”在椭圆轨道Ⅱ上运动经过Q 点时的速率一定大于经过P 点时的速率,选项D 错误。

答案 BC突破三 天体运动中的能量问题1.卫星(或航天器)在同一圆形轨道上运动时,机械能不变。

2.航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。

卫星速率增大(发动机做正功)会做离心运动,轨道半径增大,万有引力做负功,卫星动能减小,由于变轨时遵从能量守恒,稳定在圆轨道上时需满足G Mmr 2=m v 2r ,致使卫星在较高轨道上的运行速率小于在较低轨道上的运行速率,但机械能增大;相反,卫星由于速率减小(发动机做负功)会做向心运动,轨道半径减小,万有引力做正功,卫星动能增大,同样原因致使卫星在较低轨道上的运行速率大于在较高轨道上的运行速率,但机械能减小。

【典例3】 (2014·山东卷,20)2013年我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。

某航天爱好者提出“玉兔”回家的设想:如图4,将携带“玉兔”的返回系统由月球表面发射到h 高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。

设“玉兔”质量为m ,月球半径为R ,月面的重力加速度为g 月,以月面为零势能面。

“玉兔”在h 高度的引力势能可表示为E p =GMmhR (R +h ),其中G 为引力常量,M 为月球质量。

若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为( )图4A.mg 月R R +h (h +2R )B.mg 月R R +h (h +2R )C.mg 月R R +h (h +22R )D.mg 月R R +h(h +12R )解析 设玉兔在高度h 时的速度为v ,则由万有引力定律得,G Mm(R +h )2=m v 2(R +h )可知,玉兔在该轨道上的动能为E k =12GMm(R +h ),由功能关系可知对玉兔做的功为W =E p +E k =GMmh R (R +h )+12GMm(R +h ),结合在月球表面:G MmR 2=mg 月,整理可知W =mg 月R R +h (h +12R ),故正确选项为D 。

答案 D 【变式训练】3.(多选)(2013·新课标全国卷Ⅱ,20)目前,在地球周围有许多人造地球卫星绕着它运转,其中一些卫星的轨道可近似为圆,且轨道半径逐渐变小。

若卫星在轨道半径逐渐变小的过程中,只受到地球引力和稀薄气体阻力的作用,则下列判断正确的是( ) A .卫星的动能逐渐减小B .由于地球引力做正功,引力势能一定减小C .由于气体阻力做负功,地球引力做正功,机械能保持不变D .卫星克服气体阻力做的功小于引力势能的减小解析 卫星半径减小时,分析各力做功情况可判断卫星能量的变化。

卫星运转过程中,地球的引力提供向心力,G Mmr 2=m v 2r ,受稀薄气体阻力的作用时,轨道半径逐渐变小,地球的引力对卫星做正功,势能逐渐减小,动能逐渐变大,由于气体阻力做负功,卫星的机械能减小,选项B 、D 正确。

答案 BD星的线速度之比为( )图5A.392 B.332 C.233 D.239解析 由⎝ ⎛⎭⎪⎫2πT 1-2πT 29N =2π,T 1=N ,解得:T 2T 1=98。

根据开普勒定律,r 2r 1=(98),线速度v=2πr T ,则v 1v 2=r 1r 2·T 2T 1=(89)23×98=392,A 项正确。

答案 A1.(多选)如图6所示,在发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q 点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则( )图6A .该卫星在P 点的速度大于7.9 km/s ,小于11.2 km/sB .卫星在同步轨道Ⅱ上的运行速度大于7.9 km/sC .在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度D .卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ解析 由于卫星的最大环绕速度为7.9 km/s ,故A 错误;环绕地球做圆周运动的人造卫星,最大的运行速度是7.9 km/s ,故B 错误;P 点比Q 点离地球近些,故在轨道Ⅰ上,卫星在P 点的速度大于在Q 点的速度,C 正确;卫星在Q 点通过加速实现由轨道Ⅰ进入轨道Ⅱ,故D 正确。

相关主题