当前位置:文档之家› 双极膜电渗析的组装方式及其功用.TextMark(精)

双极膜电渗析的组装方式及其功用.TextMark(精)

双极膜电渗析的组装方式及其功用徐铜文1孙树声2刘兆明2杨伟华1李善清2李旭娣2何炳林3(11中国科学技术大学应用化学系,合肥230026;21山东省海洋化工科学研究院,山东寿光262737;31南开大学吸附分离功能高分子材料国家重点实验室,天津300071摘要双极膜和单极膜的巧妙配合,可用于多种分离过程,如化工、生物、海洋化工等领域,并大大地改变了这些领域的面貌.本文对于双极膜水解离过程相关的一系列应用中,电渗析器的组装方式进行了较全面的规划和论述,并对这些构型的优劣进行了评价.关键词双极膜电渗析组装方式分类号TQ028.8双极膜是一种新型离子交换复合膜,它通常由阳离子交换层(N 型膜和阴离子交换层(P 型层复合而成,在国外已商品化,并形成了多个关于双极膜制备方面的专利[1~5].由于阴、阳膜层的复合,给双极膜的传质性能带来了很多新的特性,正如半导体由于P —N 结的发现,导致了许多新型半导体器件的发明,同样用荷有不同电荷密度、厚度和性能的膜材料在不同的复合条件下,可制成不同性能和用途的双极膜[6,7]:比如用于1、2价离子分离膜,防结垢膜,抗污染膜,H +分离膜,低压反渗透脱硬膜,水解离膜等.尤其是以双极膜技术为基础的水解离领域已成为电渗析工业中新的增长点,也是目前增长最快和潜力最大的领域之一,因为利用双极膜进行水解离,比直接电解水要经济得多[8],据理论计算,制备1mol/L 25℃的酸和碱,双极膜的理论电势只有0.83V ,而电解需2.1V ;直接电解水每个电解池需一对电极,而双极膜水解离几十对膜组合只需一对电极,因此器件更加紧凑,而且由于无氧化还原反应放出H 2、O 2气体,对电极也不存在腐蚀现象.双极膜水解离不仅用于制备酸和碱,若将其与单极膜巧妙地组合起来,能实现多种功用,可用于多个领域并有望改变这些领域的面貌.作者在多年对双极膜水解离研究的基础上,结合有关文献,对双极膜电渗析器可能的组装方式进行论述,并进行一些评价,按其应用的领域不同,分成下述几个方面.1酸碱的生产1.1同时生产酸碱双极膜的最早功用是进行水解离生产酸和碱,采用最简单的两室(不包括极室,下同形式(图1,图1两室双极膜水解离电渗析示意图当双极膜反向加压后,在电场的作用下,膜内盐离子快速迁移完毕,阴阳膜层的界面就会发生水的解离,离解的H +、OH -分别通过阳膜层和阴膜层反向扩散,外界水不断补充,于是在双极膜两侧的碱室和酸室分别得到酸和碱,这就是双极膜水解离过程制酸碱的基本原理[9,10].后来发展到三室结构(图2,除收稿日期:1999-06-15第一作者:男,1967年生,博士,副研究员3中国科技大学校内青年基金资助课题第20卷第1期膜科学与技术Vo1.20No.12000年2月MEMBRAN E SCIENCE AND TECHNOLO GYFeb.2000图2三室双极膜水解离电渗析示意图了碱室和酸室外,中间是电解质溶液脱盐室,用了两张双极膜,具有对称性.笔者认为两室结构较为简单,但电流效率较低,因为阴极室产生的碱易通过阴膜向酸室扩散,阳极室产生的酸也易通过阳膜向碱室扩散,因而影响了盐正负离子的扩散和传递,降低了电流效率;而三室的结构,由于靠近极室的双极膜能阻挡酸碱的通过,就能克服这一弊端.尤其是阳膜不与酸直接接触,阴膜不与碱直接接触,膜的寿命大大延长.事实上G ineste等用这种组合方式已生产了高达6mol/L的酸和碱[11].不过,不难看出,若以这两种结构为基本单元,组成双极膜堆,则具有相同的重复单元结构(图3,靠近极室除外.图3多室双极膜堆结构示意图1.2仅生产碱[12]这种功用的双极膜电渗析组装方式如图4,由两张双极膜和一张阳膜组成的两室(碱室和酸盐混合室结构.由于混合室的酸也易通过阳膜与阳离子竞争扩散,电流效率极大程度上取决于酸的强弱,这种组装方式最适于从弱酸强碱盐生产碱和酸盐混合液,而且酸的离解常数越小、盐的浓度越高越好(在竞争扩散时,对盐正离子有利.为获得更高的电流效率,往往再加一块阳膜构成如图5所示的三室结构,这种情况下,盐溶液先通过两阳膜组成的室,然后进行循环,显然这时能得到酸浓度更高的酸盐混合液(碱的浓度差别不大,如果混合液中酸的浓度相同,此时的电流效率会更高.图4产碱的两室双极膜水解离池图5产碱的三室双极膜水解离池图6产酸的两室双极膜水解离池1.3仅生产酸[12]这种功用的双极膜电渗析组装方式如图6,由两张双极膜和一张阴膜组成的两室(酸室和碱盐混合室结构.同理,这种组装方式最适于从强酸弱碱盐如(N H4NO3生产纯酸和碱盐混合液,而且碱的离解常数越小、盐的浓度越高越好(在竞争扩散时,对盐负离子越有利.不过这种装置也适于强碱盐,当然要求碱的浓度要低(如0.2mol/L以下,以减・54・膜科学与技术第20卷少碱离子对盐负离子的竞争扩散.同样,为获得更高的电流效率,也可组成图7的三室结构形式:增加一张阴膜,并使混合液循环.图7产酸的三室双极膜水解离池2酸、碱、盐废液的净化和回收2.1废酸的净化回收[13]在有些工业生产中,通常产生大量的酸性废液,例如铅蓄电池生产中的硫酸废液,离子交换树脂再生废液,冶金工业中硫酸废液,铀加工中的硝酸废液等,这些废液中金属阳离子含量高,用常规的分离方法如普通电渗析、扩散渗析、离子交换都不能进行有效回收,但若以双极膜代替普通电渗析中的阳膜而组成图8所示的双极膜电渗析,问题就会迎刃而解.此时两张阴膜和两张双极膜交替放置构成三室结构,废酸料液从中间室通过,阴离子可通过阴膜向左室扩散,与双极产生的H +形成酸,于是料液中酸的浓度降低,其中的酸以较纯的形式得以回收.不过用这种装置回收酸有一定的极限,因为随过程的进行,料液中酸的浓度不断降低,p H 增大,在料液室易形成沉淀而阻塞膜孔,造成通量的降低,所以通常得不到100%的回收,而是有意保留0.1~0.3mol/L 的酸在料液中;这部分料液不能直接排放,还需要进行中和后才能排放.但若溶液中只有可溶性离子,就不存在上述问题.显然该过程比扩散渗析来得快,回收酸的浓度高(由于有电场力的作用.另外在双极膜的另一侧产生的OH -也有可能通过阴膜与盐负离子竞争扩散,因此这种过程更适于从强酸弱碱盐的酸性废液中回收酸.废酸的回收是双极膜水解离技术第一个实现商业化应用的例子,一个年处理6×106L 的HF 和硝酸混合液的装置现已在Washington Steel 运行,再生的酸质量分数为HF 4%~5%,HNO 3为5%~8%,纯度非常高,仅含0.54%~5%K +和痕量重金属,产生的HF 和硝酸返回到酸洗工序,而KOH/KF 则用于中和工序除去重金属. 图8废酸净化回收的双极膜水解离单元2.2废碱的净化回收[13]同理,若以阳膜代替图8中的阴膜,构成图9的组装方式,则可对废液中的碱进行有效的回收,不同的是此时料液需从两边室通过而在中间室得到产品碱.这对回收造纸废液和赤泥废液中的碱提供了一个很好的解决办法.同样,这种过程更适于从弱酸强碱盐特别是有机酸盐的酸性废液中回收酸.图9废碱净化回收的双极膜水解离单元2.3盐的净化回收上述是从酸或碱与盐组成的废液中回收酸或碱,若稍微改变一下进料方式就可以从这些废液中回收盐.图10是类似图2的组合方式(阴阳膜位置互换,两侧室进碱盐的混合料液,料液中盐负正离子分别通过阴阳膜向中间室扩散而形成盐,在左室由于双极膜产生的酸中和部分碱而得到碱少盐多的第1期徐铜文等:双极膜电渗析的组装方式及其功用・55・处理后料液,同理在右室由于双极膜产生碱而得到碱多盐少的处理后料液.为防止右室的碱与盐负离子的竞争扩散,要求碱的离解常数越小越好,因此适于处理弱碱性料液.若从弱酸性盐料液中回收盐,可按图11的组合方式与进料方式进行,过程类似.图10弱碱液中盐净化回收的双极膜电渗析结构单元示意图图11弱酸液中盐净化回收的双极膜电渗析结构单元示意图由于酸碱中和是最简单最节能的方式,很容易中和废液中酸或碱而得到相应的盐,因此用双极膜过程进行回收只有理论上的意义,无实际应用价值.3酸性气体的清除、回收随着工业的发展,排放越来越多的有害酸性气体如CO x 、NO x 、SO x 和HF 等,会引起温室效应、光污染和酸雨,对人们的生存环境已构成了极大的威胁,若不有效进行治理,后果不堪设想.双极膜过程对这类酸性气体的处理是十分有效、简单的,易于连续化操作.例如从燃料气中回收SO 2[14],可先用碱液(NaOH 进行吸收,吸收液(主要成分NaHSO 3通过图12的双极膜电渗析,其基本单元是有两张阳膜和一张双极膜构成的两室结构,则在酸室里得到H 2SO 3溶液,很容易通过气提富集SO 2,碱室里主要含Na 2SO 3和NaOH 液,可返回初始工序进行吸收尾气,整个过程实现了零排放,不仅回收了有用物质,而且治理了环境污染,Soxal TM 已将此技术用于工业废气中SO 2的脱除[15],运行良好.对于CO x 、NO x 的治理,原理类似.图12两室NaHSO 3双极膜转化器4有机酸的生产、回收4.1有机酸制备新工艺在发酵法制备有机酸过程中,有机酸的产生将使发酵液p H 值降低,阻碍菌体的生长和产物的进一步形成,传统的方法是加碱沉淀,然后硫酸酸化再制得有机酸[16].这一生产工艺包括酸解、沉淀、过滤等过程,不仅需要消耗大量酸碱,而且过程复杂,劳动强度大,形成大量废液、废渣污染环境.若用双极膜电渗析水解离,作为H +和OH 2的供应源,可直接从发酵液中生产有机酸,不必引入无机酸和碱,既节省了原料,又大大地简化了工艺,避免了环境污染.双极膜电渗析生产有机酸有三室式和两室式两种形式.在三室式电渗析转化器中,与盐生成酸碱类似,可利用图2的组合方式将有机酸盐直接转化为有机酸和相应的碱.两室式的电渗析器组合方式有两种,一种是如图4所示的由两张双极膜和一张阳膜组成,有机酸盐进入左室,其阳离子通过阳膜向右室迁移形成碱,双极膜产生的H +进入左室而获得有机酸,如前所述,这种转化器可由有机酸盐制得一种纯碱和盐与酸的混合物.另一种是如图6所示的・56・膜科学与技术第20卷由两张双极膜和一张阴膜组成,有机酸盐进入右室,其阴离子通过阴膜向左室迁移与双极膜产生的H +结合形成有机酸,这种转化器可由有机酸盐制得一种纯酸和盐与碱的混合物.由于有机酸盐易于电离,而有机酸的离解度较小,双极膜产生的H +很容易将盐离子置换出来而得有机酸,获得的较纯碱可直接返回初始发酵工序,因此图4的组合方式可获得较高纯度的有机酸.图6由于碱离子和有机酸盐的阴离子竞争扩散,会造成电流效率的降低,更适合有机碱的生产.利用双极膜电渗析工艺很易实现工艺的连续化,由于生成的碱能很快返回发酵罐,可维持p H 值稳定,工艺得到大大简化,劳动强度也大大降低,其工业流程如图13所示[17].图13有机酸制备工业流程图4.2有机酸回收新工艺在传统法生产有机酸中,沉淀后,仍有相当一部分的有机酸残留在母液中,如味精的生产中,有质量分数为20%的谷胺酸钠残留在母液中(浓度达1.5%,这些母液若直接排放,既造成环境严重污染,又浪费资源,产品得率低.目前的方法是用离子交换或者蒸发浓缩重新提取,这两种方法弊端很多,前者不能实现连续化操作,需频繁耗费大量的酸碱进行再生,并污染环境;后者能耗大,经济上不合算,最终母液仍需排放.若把双极膜与单极膜组合成图14的方式,则能对母液中的有机酸盐进行有效的回收.图14是由一张双极膜、一张阴膜和两张阳膜组成的三室结构,含有机酸盐的母液进入右室,其阴离子通过阴膜向中间室迁移与双极膜产生的酸离子形成有机酸,双极膜产生的碱离子与盐正离子在左室形成碱,右室为脱盐室,可直接排放或水再利用.若母液中成分以有机酸形式存在,则可利用图6所示的由两张双极膜中间放置一张阴膜的两室结构,含有机酸的母液进入右室,利用右边双极膜产生的OH -使有机酸离解产生有机酸根,然后通过中间的阴膜向左室迁移,利用左边双极膜产生的H +而在左室形成有机酸,利用这一原理可回收常见的有机酸和各种氨基酸[18,19].图14有机酸回收的双极膜水解离单元图15两室提钾双极膜转化器5海洋化工领域中离子分离海洋化工涉及的分离如K +和Na +,I -和Br -、Cl -是十分棘手的问题,分离难度相当大,产品得率低,一直制约着盐化工的发展.目前用斜方沸石能有效的富集K +和I -,但脱附难度大,且沸石很容易破碎,分离效率低.若把双极膜过程与吸附过程结合起来,可望改进现行的工艺.图15是提取K +的装置,由双极膜和阴阳膜各一张组成的两室结构,左室填充斜方沸石,利用其优先吸附K +的特性,将卤水中的K +富集,然后借助与双极膜产生的H +,将K +交换下来,并通过阳膜向右室迁移,与通过阴膜迁移来的X -形成KX.这种操作很有优势,由于NaX (如NaCl 的溶解度受温度的影响不大,因此混入NaX 关系也不大,只要能把KX 的浓度提高,意义就非常重大.另一方面由于溶液中K +的迁移数大于Na +,第1期徐铜文等:双极膜电渗析的组装方式及其功用・57・ 58 ・・膜科学与技术第 20 卷因此从理论上也保证了 K + 优先透过膜 , 初步实验表明这种方案十分可行 . 类似地若把图 15 的阴阳膜对调位置并改变一下电极方向 ( 如图 16 ,则可借助斜方沸石易吸附 I 的特性将其富集在右室 . 若把图 15 、组合在一起 16 + ( 图 17 ,则可同时富集 K 和 I . 边分别对称放置的阳膜阴膜构成的四室结构 . 左边一室是含 Cu2 + 料液 , 阳离子通过阳膜到达左边二室 ,由于双极膜离解的 O H - 也进入二室 , 因此该室显碱性 ,与萃取剂环烷酸 ( HR 中和 ,使 Cu2 + 优先在该室与环烷酸根形成萃合物 CuR2 ,萃取液循环进入双极膜右边一室 ( 第三室 , 在这里由于双极膜离解的 H + 置换出Cu2 + , 萃取剂得到再生 , 再循环至左边二室 , 反萃取下的 Cu2 + 通过右边阳膜进入第四室 ,与通过阴膜的料液中的阴离子 ( 如 Cl - 形成盐 , 整个过程基本无需添加萃取剂 , 过程很易实现自动化 ,操作大大得到简化 . 图 16 两室提碘双极膜转化器图 18 含铜料液的电萃和电反萃示意图 7结论本文系统地论述了双极膜和阴阳膜可能的组合方式以及他们的应用 , 并对组合方式的优劣进行了评价 . 双极膜电渗析通过巧妙的组合 , 妙趣横生 , 可分别应用于化工、环保、生物化工、海洋化工等诸多领域 ,并有望解决这些领域中的技术难题 ,给这些领域注入新的生机和活力 . 致谢 : 本文在撰写过程中 ,得到了国家海洋局杭州水处理中心莫剑雄研究员的诸多指教 ,深表谢意 . 参考文献 1 Francesco P , Rosignano S L . Met hod for making a bipolar membrane. US Patent 5849167. 1998 - 12 - 15 2 Simons R G ,Bay R. High performance bipolar membranes. US Patent 5227040 ,1993 - 07 - 13 3 Lee L TC ,Dege G J ,Liu K J . High performance ,quality controlled bipolar membrane. US Patent 4057481. 1997 - 图 17 联合提钾、碘的双极膜转化器 6传统化工操作的革新膜过程的出现彻底改变了传统的化工分离过程 ,形成了诸如膜萃取、膜反应、膜催化、膜精馏、膜吸收等一些新的集成单元操作 , 这里介绍双极膜在新的单元操作中的一个应用———电萃和电反萃结合从混合含 Cu2 + 料液中回收Cu2 + . Cu2 + 的萃取一般在碱性条件下用环烷酸作萃取剂 ,煤油为萃取介质 , 酸性条件下反萃取而得产品 , 过程复杂 , 效率低下 , 溶剂损失严重 . 这个过程可用双极膜一步完成 ,实现这种功能的组合方式如图 18 ,由一张双极膜和其两 1期第 11 - 08 徐铜文等 : 双极膜电渗析的组装方式及其功用 Membr Sci , 1991 ,58 :117~138 59 ・・ 4 Liu KJ ,Lee H L . Bipolar membranes. US Patent 4584246. 1986 - 04 - 22 5 Mueller H , Puetter H. Production of bipolar membrane US Patent 4670125. 1987 - 06 - 02 6徐铜文 ,汪志武 ,刘 . 双极膜的理论及应用展望 . 水处宁 13 Chao Y C , Chlanda F P , Mani K N. Bipolar membranes for purification of acids and bases. J Membr Sci ,1991 ,61 : 239~252 14Liu K J , Chlanda F P , Nagsubramanian K. Application of bipolar membrane technology : A novel process for control of sulfur dioxide from flue gases. J Membr Sci , 1978 , 3 : 57~70 15 Liu K J , Nagsubramanian K , Chlanda F P. Membrane electrodialysis process for recovery of sulfur dioxide from power plant stack gases. J MembrSci ,1978 ,3 :71~83 16 陈驹声主编 . 有机酸发酵生产技术 . 北京 : 化学工业出版理技术 ,1998 ,24 ( 1 :20~25 7 廖尚志 , 莫剑雄 . 双极膜的发展和应用 . 水处理技术 , 1995 ,21 ( 6 :311~318 8 Nagsubramanian K ,Chlanda F P , Liu K J . Use of bipolar membrane for generation of acid and base - An enigneering and economic analysis. J Membr Sci ,1977 ,2 :109~124 9 Kedem O , Warshawsky A. Supported , mechanically stable bipolar membrane for electrodialysis. US Patent 5288385. 1994 - 02 - 22 10 Kimura T , Suzuki M , Uchibori T. Bipolar type ion ex2 change membrane electrolytic cell. EP 0704556Al. 1996 03 - 04 11 Gineste J L , Pourcelly G , Lorrain Y , et al . Analysis of factors limiting t he use of bipolar membranes : A simplified model to determine trands. J Membr Sci ,1996 ,112 :199~ 208 12 Mani K N. Electrodialysis water splitting technology. J 1 2 2 社 ,1991 17 Mani K M , Cglanda F P , Byszewski C H. Aquatech membrane technology for recovery of acid / bases values from salt streams. Desalination ,1988 ,68 :149~166 18 Lee E G , Moon S H , Chang Y K , et al . Lactic acid re2 covery using two - stage electrodialysis and its modelling. J MembrSci ,1998 ,145 :53~66 19 Grib H , Bonnal L , Sandeaux R , et al . Extraction of am2 p hoteric amino acids by an electromembrane process - p H and electrical state control by electrodialysis wit h bipolar membranes. J Chem Technol Biotechnol ,1998 ,73 :64~70 2 1 2 3 The f unctions and constructions of a bipolar type ion exchange membrane electrolytic cell X u Tongw en , S u n S husheng , L i u Zhaom i ng , Y ang W ei hua , L i S anqi ng , L i X u di , He B i ngli n branes is applied in many separation processes and fields , such as chemical ,Biological ,Ocean Chemical ,etc ,and st rates t he basic st ruct ures of various types of elect rolytic stacks and gives t he corresponding comment s. Key words bipolar membrane elect rodialysis const ruction arrangement has brought about much changes in t hese areas. According to t he aims of different appications ,t his paper demon2 Abstract Elect rodialysis wit h wonderf ul combinations of bipolar membranes and monopolar ion exchange mem2 ( 11Depart ment of Applied Chemist ry , U niversity of Science and Technology of China , Hefei 230026 ; 21 Instit ute of Ocean Chemical Engineering & Science of Shandong , Souguang 262737 ; 31 The State Key Laboratory of Functional Polymer Materials for Adsorption and Separation , Tianjin 300071。

相关主题