伽罗瓦理论用群论的方法来研究代数方程的解的理论。
在19世纪末以前,解方程一直是代数学的中心问题。
早在古巴比伦时代,人们就会解二次方程。
在许多情况下,求解的方法就相当于给出解的公式。
但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。
三次、四次方程的解法直到16世纪上半叶才得到。
从此以后、数学家们转向求解五次以上的方程。
经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。
19世纪上半叶,阿贝尔受高斯处理二项方程(p为素数)的方法的启示,研究五次以上代数方程的求解问题,终于证明了五次以上的方程不能用根式求解。
他还发现一类能用根式求解的特殊方程。
这类方程现在称为阿贝尔方程。
阿贝尔还试图研究出能用根式求解的方程的特性,由于他的早逝而未能完成这项工作。
伽罗瓦从1828年开始研究代数方程理论(当时他并不了解阿贝尔的工作),他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。
到1832年他完全解决了这个问题。
在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。
1846年他的手稿才公开发表。
伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。
伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。
在几乎整整一个世纪中,伽罗瓦的思想对代数学的发展起了决定性的影响。
伽罗瓦理论被扩充并推广到很多方向。
戴德金曾把伽罗瓦的结果解释为关于域的自同构群的对偶定理。
随着20世纪20年代拓扑代数系概念的形成,德国数学家克鲁尔推广了戴德金的思想,建立了无限代数扩张的伽罗瓦理论。
伽罗瓦理论发展的另一条路线,也是由戴德金开创的,即建立非交换环的伽罗瓦理论。
1940年前后,美国数学家雅各布森开始研究非交换环的伽罗瓦理论,并成功地建立了交换域的一般伽罗瓦理论。
伽罗瓦理论还特别对尺规作图问题给出完全的刻画。
人们已经证明:这种作图问题可归结为解有理数域上的某些代数方程。
这样一来,一个用直尺和圆规作图的问题是否可解,就转化为研究相应方程的伽罗瓦群的性质。
在伽罗瓦死去14年后的1846年,法国数学家刘维尔整理出版了伽罗瓦的手稿,人们才逐渐理解了伽罗瓦的思想。
伽罗瓦运用他的理论彻底解决了方程的根式可解问题,他的主要结论可以归结为:一个方程根式可解当且仅当他的伽罗瓦群是可解群。
诚然,对于伽罗瓦的时代来说,群论无疑太过于超前了,当时的数学家们要么完全不能理解,以至于在几十年之后,当一位大数学家看到了他的理论后,苦苦思索了3个月,才能够理解其含义;当时的数学家们要么出于某种偏见,不给予他正确的评价,短视蒙蔽了他们,使得英才早逝。
伽罗瓦的生命永远的停留在了21岁,我们不敢去想象,如果他的生命再长一点,他会给我们这个世界做出多么大的贡献。
天才总是和孤寂相伴,孤寂的伽罗瓦没有亲人,孤寂的伽罗瓦没有爱人,孤寂的伽罗瓦甚至找不到一个可以在思想上和自己对话的人。
如果非说有的话,也只有一个早他3年死去和他同样不得意的阿贝尔,可惜的是,这两个天才从未蒙面。
高处不胜寒,站在一个空前的高度俯视着这个世界,他的孤寂可想而知。
伽罗瓦是不幸的,伽罗瓦又是幸运的。
伽罗瓦的不幸是因为他同时代的人没有理解他那超前的思想,他没有目睹群论强盛时的景象,一颗明星在本该最绚烂的时刻戛然而止,可怜无知音,弦断有谁听?我们不能不为之扼腕叹息;同时,伽罗瓦又是幸运的,因为他的理论最终得到了承认,不!是他们不得不接受他的理论!他开创的新科学不断发展壮大。
伽罗瓦在他21岁时离开了他热爱的数学,21岁的伽罗瓦永远是科学的孩子,21岁的伽罗瓦永远也不会长大,21岁的伽罗瓦,他冲动,他会把黑板擦砸向老师的头上;他不够成熟,他会为了坚持自己的想法不屈从于权贵。
21岁的伽罗瓦年轻、有激情,21岁的他敢冲敢做,21岁的他可以为了自己的爱去决斗,21岁的他可以为了自己的理想无所畏惧。
伽罗瓦,他永远地停留在了21岁的那个春天,青春的梦想,不老的传奇。
200年过去了,21岁的伽罗瓦风采依然,提笔挥洒的身影,依稀可见:群、环、域、多项式环、分裂域、内自同构、域链、根式可解。
彻底解决了代数方程可解性的群论已经足够强大,可是群论的魅力还不止于此。
由于群论的出现,一门新的数学分支产生了——抽象数学。
在此指引下,人们在数学上开始更注重于结构性,对称性,整体的把握。
群论更重要的意义在于他突破了原先的思维模式,提供了一种全新的理念。
如果非得做出个比较的话,那么群论的意义和微积分、解析几何、非欧几何、集合论那些最具有开创性的工作具有同等的地位。
甚至更要高深,因为有些可以通过不断努力积累得到,有的理论则是思维层面和思想高度的问题,无法通过后天的努力得到哪怕是一丁点的提高。
伽罗瓦的理论犹如天外飞仙,超尘脱俗,犹如羚羊挂角,无迹可寻。
因为,他的理论是抽象的!他的理论是方法论!是思想!从理论上说,所有的数学分支甚至是所有的社会科学、自然科学都可以通过代数结构联系在一起。
一、伽罗瓦群论产生的历史背景从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。
接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。
这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。
他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。
同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。
用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。
1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根(n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。
他的工作有力地促进了代数方程论的进步。
但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。
并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。
他的这种思维方法和研究根的置换方法给后人以启示。
1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。
同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。
随后,他又着手探讨高次方程的具体解法。
在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。
因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。
随后,挪威数学家阿贝尔开始解决这个问题。
1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。
并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。
接着他进一步思考哪些特殊的高次方程才可用根式解的问题。
在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。
现在称这种方程为阿贝尔方程。
其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。
实际上应说根xi=q1(xi),q2(xi),…,qn(x i)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。
阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。
法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。
二.伽罗瓦创建群理论的工作伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。
如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。
峰 1.伽罗瓦群论的创建伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。
当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。
在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。
他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。
他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。
他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。
对有理系数的n次方程x+axn-1+a2xn-2+…+an-1x+an=0 (1)假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。
方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。
现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。
一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。