目录目录 (1)摘要 (3)Abstract (4)第1章概述 (6)1.1总述 (6)1.2 UWB基本原理 (6)1.2.1脉冲信号 (6)1.2.2UWB 调制技术 (7)1.3UWB技术特点 (8)1.4UWB发射机和接收机组成框图 (9)1.4.1UWB发射机组成框图 (9)1.4.2UWB接收机组成框图 (10)1.5UWB 技术的应用前景 (11)1.6结束语 (11)第2章MATLAB软件工具介绍 (13)2.1MATLAB语言的概述 (13)2.2MATLAB的历史 (13)2.3MATLAB语言的特点 (14)2.4MATLAB仿真 (15)第3章超宽带无线的调制技术 (17)3.1PPM-TH-UWB 调制方式 (17)3.1.1跳时超宽带信号的产生 (17)3.1.2PPM-TH-UWB的发射链路 (20)3.1.3PPM-TH-UWB 仿真结果及其分析 (20)3.2PAM-DS-UWB调制方式 (22)3.2.1直接序列超宽带信号的产生 (22)3.2.2PAM-DS-UWB发射链路 (24)3.2.3 PAM-DS-UWB仿真结果及其分析 (25)3.3 OFDM调制技术 (27)3.3.1概述 (27)3.3.2 多频段OFDM-UWB信号产生 (28)3.4.3 OFDM仿真结果及其分析 (28)3.4总结 (32)第4章性能分析及应用前景 (33)4.1 脉位调制(PPM)和脉幅调(PAM) (33)4.2OFDM调制 (33)4.3UWB的应用前景 (34)致谢 (35)参考文献 (36)摘要超宽带(UWB,Ultra Wide Band)无线技术在无线电通信、雷达、跟踪、精确定位、成像、武器控制等众多领域具有广阔的应用前景,因此被认为是未来几年电信热门技术之一。
1990年,美国国防部首先定义了“超宽带”概念,超宽带无线通信开始得到美国军方和政府部门的重视。
2002年4月,美国FCC通过了超宽带技术的商用许可,超宽带无线通信在民用领域开始受到普遍关注。
目前“超宽带”的定义只是针对信号频谱的相对带宽(或绝对带宽)而言,没有界定的时域波形特征。
因此,有多种方式产生超宽带信号。
其中,最典型的方法是利用纳秒级的窄脉冲(又称为冲激脉冲)的频谱特性来实现。
超宽带无线电是对基于正弦载波的常规无线电的一次突破。
几十年来,无线通信都是以正弦载波为信息载体,而超宽带无线通信则以纳秒级的窄脉冲作为信息载体。
其信号产生、调制解调、信号隐蔽性、系统处理增益等方面,具有独特的优势,尤其是能够在密集的多径环境下实现高速传输。
由于脉冲持续时间很短,多径分量在时域上不易重叠,多径分辨能力高,通过先进的多径分离技术或瑞克接收机,可以充分利用多径分量。
目前,典型的超宽带无线通信调制方式以TH-PPM、TH-PAM为主,本论文中,介绍超宽带无线通信中的调制技术,主要讨论TH-PPM、TH-PAM的基本原理,并且对比调制技术的优缺点,性能的好坏,并进行动态的仿真,从仿真图中较清楚的研究调制方式,从而得出正确的结论,细致的研究超宽带无线通信中的调制技术。
关键字:超宽带调制方式PPM调制PAM调制OFDM调制AbstractUltra-Wideband wireless technology in radio communications, radar, tracking, precise positioning, imaging, arms control, with a wide range of prospects, is believed to be the next few years one of the Most popular technology for telecommunications. In 1990, The u.s. Department of Defense first defines the concept of ultra-wideband networking, ultra-wideband wireless communication begins to get the US Military and Government departments. In April 2002, The US FCC passed the UWB technology commercial license, ultra-wideband wireless communication in civilian areas are of common concern. At present, the definition of ultra-wideband "just for thee signal spectrum of relative bandwidth (or absolute bandwidth), no definition of the waveform. Therefore, there are several ways to produce ultra-wideband signal. Of these, the Most typical method is to use the nanosecond pulses of (also known as impulse) spectrum characteristics.UWB radio is a radio based on conventional sinusoidal carrier a break. For decades, wireless communications are based on sinusoidal carrier as information carriers, and ultra-wideband wireless communications zeyi narrow nanosecond pulses as information carriers. the signal generation, Modulation and demodulation, signal hiding, the system processing gain and so on, has unique advantages, in particular, to the dense multipathenvironment to achieve high-speed transmission. As the pulse duration is very short, Multipath components overlap in time domain is not easy, Multi-path high-resolution capabilities, advanced Multi-path Through separation or rake receiver, you can take full advantage of Multipath components.At present, The typical UWB Modulation to TH-PPM, TH-PAM,this article describes The UWB wireless communication modem technology, focused on the TH-PPM, TH-PAM, and the basic principles of comparative advantages and disadvantages of Modulation technology,performance, and dynamic simulation, from simulation figure in clearer of Modulation to obtain The correct conclusion, careful study of ultra-wideband wireless comunication Modem technology.Keywords: UWB Modulation PPM Modulation PAM Modulation OFDM Modulation第1章概述1.1 总述近几年来,超宽带短距离无线通信引起了全球通信技术领域极大的重视。
超宽带通信技术以其传输速率高、抗多径干扰能力强等优点成为短距离无线通信极具竞争力和发展前景的技术之一。
FCC(美国通信委员会) 对超宽带系统的最新定义是:相对带宽(在- 10dB 点处) (fH - fL)/fc > 20 %(fH ,fL ,fc分别为带宽的高端频率、低端频率和中心频率) 或者总带宽BW> 500MHz。
它与现有的无线电系统比较,在花费更小的制造成本的条件下,能够做到更高的数据传输速率(100~500MbPs) 、更强的抗干扰能力(处理增益50dB 以上) ,同时具有极好的抗多径性能和十分精确的定位能力(精度在cM 以内) 。
1.2 UWB基本原理发射超宽带(UWB) 信号最常用和最传统的方法是发射一种时域上很短(占空比低达0. 5 %) 的冲激脉冲。
这种传输技术称为“冲击无线电( IR) ”.UWB - IR 又被称为基带无载波无线电,因为它不像传统通信系统中使用正弦波把信号调制到更高的载频上,而是用基带信号直接驱动天线输出的;由信息数据对脉冲进行调制,同时,为了形成所产生信号的频谱而用伪随即序列对数据符号进行编码。
因此冲击脉冲和调制技术就是超宽带的两大关键所在。
1.2.1脉冲信号从本质上讲,产生脉冲宽度为纳秒级的信号源是UWB 技术的前提条件。
目前产生脉冲信号源的方法有两类: ①光电方法,基本原理是利用光导开关导通瞬间的陡峭上升沿获得脉冲信号。
由于作为激发源的激光脉冲信号可以有很陡的前沿,所以得到的脉冲宽度可达到皮秒(10 - 12 ) 量级。
另外,由于光导开关是采用集成方法制成的,可以获得很好的一致性,因此是最有发展前景的一种方法。
②电子方法,利用微波双极性晶体管雪崩特性,在雪崩导通瞬间,电流呈“雪崩”式迅速增长,从而获得具有陡峭前沿的波形,成形后得到极短脉冲。
在电路设计中,采用多个晶体管串行级联,使用并行同步触发的方式,加快了雪崩过程,从而达到进一步降低脉冲宽度的目的。
单周期脉冲的宽度在纳秒级(0. 1~1. 5ns) ,重复周期为25~1000ns ,具有很宽的频谱。