负折射率材料
实验中发现,在某种材料中,光线的折射与正常折射不同,正常折射时,光线会位于法线的不同侧,在这种材料中,光折射时,光线位于法线的同侧,因此称之为负折射现象,这种材料叫做负折射率材料。
在负折射率材料中,电场、磁场和波矢方向符合“左手法则”,而不是常规材料中的右手定则,所以具有负折射率的材料也被称为左手材料。
光波在其中传播时,能流方向和波矢方向相反,用同时具备负介电常数和负磁导率的超材料可以得到这一现象,此时超材料具有负折射率,这样的材料也被叫做负折射率材料。
光波是一种电磁波,在传播过程中,电场、磁场和波矢方向遵守右手定则)//(k H E ⨯。
光发生正常折射时,遵守折射定律)sin sin (2211i n i n =,入射光线和折射光线在法线的不同侧,同时遵守费马原理——光程沿平稳值的路径而传播。
但是当光波从具有正折射率的材料入射到具有负折射率材料时,介电常数和磁导率都为负)0,0(<<με,折射率n 取负值
)0(<-=εμn ,
电场、磁场和波矢符合左手定则,能流方向和波矢方向相反)(⨯=。
自然电磁材料以原子或分子构成,光学和电磁性质通过化学来改变,介电常数和磁导率既定且取值有限。
而超材料一般认为是具有天然材料所不具备的超常物理性质的人工复合结构或复合材料,通过单胞的几何排列,设计出不同的结构单元,原则上能够实现几乎任意的电磁参数,比如负值。
在晶体学中,原胞是最小重复单元具有一个格点,格点上的原子是一个或者两个或者两个以上,单胞是原胞的整数倍,可以通过改变单胞的形状、大小和构型,使单胞达到几十或者几百个原子的量级,甚至更高,从而改变材料的电磁参数,由此控制电磁波的传输。
调控电磁参数可以使材料的折射率为负值,使得这种超材料成为负折射率材料。
目前扫描隧道显微镜(STM )可以观察和定位单个原子,此外,扫描隧道显微镜在低温下(4K )可以利用探针尖端精确操纵原子,所以可以利用扫描隧道显微镜改变单胞的几何结构,得以实现具有负折射率的超材料。
研究发现负介电常数可以由长金属导线阵列(ALMWs )这种结构获得,微型金属共振器,比如具有高磁化率的开口环形共振器(SRRs )可以实现负的磁导率。
将这两种结构结合,即金属导线和开口谐振环阵列结构,可以实现负折射率材料。
除此之外,串联电容和并联电感的周期性结构,以及利用量子相干效应或者EIT (电磁感应透明)效应也可以实现负折射率材料。
因为量子相干性,或者说“态之间的关联性”,是描述电子向右自旋和正电子向左自旋的状态是相关联的这一现象。
EIT 也叫电磁感应透明,是由原子光激发通道之间的量子相干效应引起的,并导致光在原子共振吸收频率处的吸收减小甚至于变成完全透明,是一种消除电磁波在介质中传播过程中所受到的影响的技术。
可以将铜做成金属导线和开口谐振环阵列结构,再添加其它物质做成复合材料。
因为铜有很好的延展性,导热和导电性能较好,并且铜在自然界含量丰富,化学性质很稳定,是抗磁性材料。
铜已经得到广泛应用,我们对铜的研究已经很完善。
铜的熔点较低,容易再熔化、再冶炼,回收利用相当的便宜。
此外,铜是人体健康不可缺少的元素,且它的潜在毒性较低。
复合材料具有重量轻、强度高、加工成型方便、弹性优良和耐化学腐蚀等特点。
以铜为主要元素的复合材料,以不同方式组合而成,可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围,可以满足不同的需求。
根据广义相对论,时间和空间都是可以“弯曲”的,而空间里的光线同样可以弯曲,利用负折射率材料,改变材料的单元结构,通过不同的结合结构和排列设计,实现了让光波、雷达波、无线电波、声波甚至地震波弯曲的想法。
据此,负折射率材料可以扭曲光波,阻碍人眼看见物体;或者使电磁波绕过目标实体而实现隐身。