薄层色谱法-PPT课件
2020/3/21
33
同时一种成分的色谱行为会受到混合物中其他 成分的影响,这种影响的大小取决于混合成分 的种类、浓度、以及斑点间的距离等。这种影 响一般使分配系数变小。如两个相邻斑点中后 面的一个展开速度较其单独展开时为大。
2020/3/21
34
固定相的活度及其调节
在其他因素一定时,活度增加,Rf值减少, 反之亦然。可通过预吸附溶剂分子,调节其 表面活性。例如可将活化薄层板放在相对湿 度恒定的空间里来达到调节活度的目的。
许多溶剂有吸湿性,使溶剂含水量不一致, 导致实验难以重现。
溶剂储藏时间和条件对溶剂质量影响,应注 意出厂日期。
混合流动相组分之间(或杂质)可能发生相 互作用。
对于易挥发的溶剂,难于配制稳定组成的流 动相。要求操作格外小心,同时混合流动相 不应重复使用。
2020/3/21
30
溶剂的选择性
指溶剂引起两种溶质位移差别的能力,即 分离度。
2020/3/21
3
薄层色谱与高效液相色谱的差别(特点)
固定相和流动相
TLC——流动相流动靠毛细作用力, 流动相选择较少受限制。而 HPLC是 在封闭的系统内,流动相流量靠泵控 制,溶剂选择受检测器限制。
样品处理
TLC要求没有HPLC严格。
2020/3/21
4
色谱分离
TLC可同时分离多个样品,并可采用相同 或不同溶剂进行同向或双相多次展开,通 常采用正相色谱。
24
R=
n
× ⊿Rf
4
Rf1
由上式,Rf与R之间存在着如图所示关系
R
Rf=0.3,R最高
1.00
Rf在0.2-0.5,R变化不大
0.75
Rf﹤0.1或﹥0.7,R下降
0.5
0.25
0 0.1 0.3 0.5 0.7 0.9 Rf1
2020/3/21
25
4 流动相与展开体系
液-固吸附 ——在该色谱中,溶质的保留 和分离选择性决定于三个因素:
自动薄层色谱点样仪——由计算机控制。
药典规定:点样基线距底边2.0cm, 样点直径 2-4mm, 点间距离约为1.5-2.0cm。
2020/3/21
15
展开方式
多数采用直线形上行展开,薄层板水平 角度以75 为最佳。展开距离一般为1015cm。
多次展开——一次展开未达满意分离时, 可将薄层板干燥后再次用同一种溶剂展 开,可重复多次,直到混合物分离为止。
含有荧光指示剂的商品吸附剂以“F”表示, 并以下标注明其激发光波长。例 硅胶HF254
2020/3/21
10
薄层板涂铺要求:均匀、平整、无气泡引起 的凹坑和龟裂。例:
硅胶板(粒度10 ~40um)
硅胶G——将硅胶置研钵中,加入少量水, 研磨均匀,至无结块和气泡,再加入比 例量的水(一般为1份固定相与3份水),迅 速研磨均匀,立即涂铺。
HPLC一通常采用反相色谱。
对污染物抗受力强
TLC——颗粒物质、腐蚀性物质、不 可逆吸附物质均无影响。
HPLC—— 颗粒物质、腐蚀性物质、 不可逆吸附物质均有大的影响。
2020/3/21
5
2 薄层色谱系统
薄层板 未改性固定相 硅胶—为使用最广泛的薄层材料 氧化铝—有碱性、中性、酸性 硅藻土—为化学中性吸附剂 纤维素—天然多糖类 聚酰胺—为特殊类型有机薄层材料, 对能形成氢键的物质有特别的选择性。
点样量应适中,过载会引起斑点拖尾, 分离度变差,以最小检测量的几倍~几 十倍为宜。
手工点样工具:定容玻璃毛细管(1 – 5ul),微量注射器。
2020/3/21
14
自动点样
Limomat IV 喷样仪——样品溶液通过气流 成雾状喷向薄层,移动板台,使在薄层上 流下样品条带。
• 特点:适合于大量稀样品溶液的喷加; 条带宽度不超过2mm,有利于改善分 辨率;便于狭缝式光密度计扫描;要 求薄层板强度高。
2020/3/21
6
表面改性固定相
疏水改性硅胶——化学键合烷基
亲水改性硅胶——引入氨基、氰基、二 羟基等,薄层板极性介于极性吸附剂和 疏水改性剂之间(极性次序:硅胶﹥氨 基﹥氰基﹥二羟基﹥ 反相)。
表面改性纤维素——乙酰化纤维素
药典收载的固定相有:硅胶类、硅藻土类、 氧化铝类、微晶纤维素类等。颗粒直径一 般要求10 – 40 um。
R=1/4( -1) n[k /( k +1)] 分离因子= k1/k2,k为k1和k2的平均值 由上式可见,R取决于三个因子:
理论塔片n主要是吸附剂性质的函数 k 反映了两种溶质的平均迁移速度,
其由流动相溶剂强度 决定 取决于吸附剂和流动相的组成
2020/3/21
31
溶剂优化规则:
薄层色谱法
2020/3/21
1
2020/3/21
2
1概述
▪ 1938年俄国人首先实现了在氧化铝薄层上分离一 种天然药物。1965年德国化学家出版了“薄层色 谱法”一书,推动了这一技术的发展。
▪ 因TLC法设备简单,分析速度快,分离效率 高,结果直观,很快被用作定性和半定量的 方法。
70年代中后期发展了高效薄层色谱。80年代 以后发展了薄层色谱光密度扫描仪,和各步 操作的仪器化,并实现了计算机化。
物理方法——紫外光下显示荧光或荧光淬灭
化学方法——加化学试剂显色,要求显色稳定、 持久、专属、灵敏、线性良好。
斑点定位方法
碘蒸气法——灵敏、简便,为通用显色法。将 碘结晶放在密封的展开缸中,碘的升华,使缸 内充满紫色的碘蒸气。将展开后的板挥干溶剂 置碘缸中至薄层色谱上出现棕色斑点。放置时 间不宜太长,否则背景吸附剂也吸附碘,使信 噪比降低。用针头将斑点标记下来,放在通风 处使碘挥发。
2020/3/21
9
有机黏结剂——羧甲基纤维素钠(CMC)、 淀粉、聚乙烯醇、高分子聚合物等。其特 点是薄层强度高、使用方便,但不能用浓 硫酸作显色剂。
荧光黏结剂——在吸附剂中添加某种荧光指 示剂,常用的荧光指示剂
在254nm紫外光下发蓝色荧光的有钠荧光 素、硫化镉、阴极绿等。
在366nm有荧光的指示剂如彩蓝等。
流动相
溶 解 能 力
竞争
吸附 剂
溶质 相互作用
2020/3/21
26
液-液分配
基于组分在互不相溶的两相间的溶解度 不同而实现分离的一种展开系统。可在 展开前,将薄层板浸入某种液体固定相。 实际上在TLC中,分配与吸附是并存的 (大气中水分也是一种固定相)。
此外还有:化学键合相反相展开、化学 键合相正相展开、离子交换、离子对色 谱、凝胶、胶束、手性展开。
b0.5为样品斑点半峰宽, b0样品起始斑点 半峰宽。
塔片高度h真实= Ls/ n真实
2020/3/21
22
容量因子(k)与比移值(Rf) k=ts/ tm(物质在两相中滞留时间之比) 又k=K(Vs/ Vm) Rf=Vm/(Vm+KVs)=1/(1+k) k ∞ 9 4 2 1 0.5 0
2020/3/21
19
3 薄层色谱参数
保留参数(Rf值)
用来表征斑点位置的基本参数是保留因子,
通常称作比移值,用Rf表示。
Rf=LL。s/L。,
样品
Lr
原
W
点
原 点
参 比
前 沿
RS
Ls
2020/3/21
20
注意:
同一物质在不同展开方式中得到的比移 值是不相同的。
在同样溶剂的重复n次的多次展开后的比 移值(Rf)n=1-(1-Rf)n 。
28
一些常用溶剂的溶剂强度与溶解度参数
溶剂
溶剂
正己烷 0.01 7.3 环己烷 0.04 8.2
苯
0.32 9.2 乙醚 0.38 7.4
二氯甲烷 0.42 9.6 正丙醇 0.82 10.2
正丁醇 0.70 /
四氢呋喃 0.57 9.1
乙酸乙甲乙酮 0.51 /
二氧六环 0.56 9.8
吡啶
0.71 10.4 丙酮
0.50 9.4
乙醇
0.88 /
乙酸 1.00 12.4
二甲亚砜 0.75 12.8 甲醇
0.95 12.9
乙二醇 1.11 14.7 甲酰胺 / 17.9
2020/3/21
29
流动相选择时需考虑溶剂的下列情况
一些溶剂如氯仿、乙醚一般含有微量乙醇作 保护剂,有时需重蒸除去乙醇。
分步展开——混合物性质差别较大时, 一种流动相不能有效分离时,可采用不 同溶剂依次展开不同距离。
2020/3/21
16
连续展开——使到达薄层上缘的溶剂不断蒸 发,连续展开以增加展开距离。因无溶剂前 沿,需要有个参照物同时展开,以计算相对 保留值。
二维展开——在两个垂直的方向上进行展开。 将样品点在薄层板的一个角上,展开适当距 离后,挥干溶剂,再将薄层板以与原展开方 向成90 的方向进行展开。
也可采用两种强溶剂与一种弱溶剂组成的三元 混合流动相,此时,溶剂强度由弱溶剂控制, 而溶剂选择性则由两强溶剂控制。
2020/3/21
32
斑点的扩散与形状
在TLC中斑点的移动与扩散是二维的,因为 斑点在展开方向和与之垂直方向上的扩散速 度是不相等的,展开剂的移动速度也是不等 的,在单位体积或单位质量薄层内所含的溶 剂量越接近溶剂前沿减少得越明显,直至溶 剂前沿时为零,这一现象称为“溶剂的体积 梯度”,在各种展开形式中均存在。当然, 对于这一问题实际上只是在定量斑点浓度时 才需要考虑。
硅胶
110℃
1h
氧化铝
110℃
30min
2020/3/21
12
比纸色谱具有速度快、分离清晰、灵敏度高、可 以采用各种方法显色等特点。