第二章光纤学的基本方程
平面波在任意方向传输的波函数:
Er ,t E0(r )exp it k • r
相位因子 k • r nk0 • r
▪ 波函数略去时间因子
k
0
00,n
0
Er ,t E0(r )exp it k0S(r )
同理:
H r ,t H 0(r )exp it k0S(r )
由麦克斯韦方程推导程函方程:
er
dnr
dr
dr ds
dn
ds
nK
er
dnr
dr
dr ds
dn ds
n r
dr ds
dn ds
❖ 上式表明折射率梯度矢量位于光线的切面内
n’ n
eR
n’ >n
dr/ds
❖ 重写曲率矢量和光线方程展开式:
K
d 2r ds 2
1
R
eR
nK
er
dnr
dr
dr ds
dn ds
n r
dr ds
2、矢量解法的结果
Ez
AJ m(Ur )e jm CK m(Wr )e jm
e j(t z ).......(r e j(t z ).......(r
a) a)
Hz
BJ m(Ur )e jm DK m(Wr )e jm
e j(t z ).......(r e j(t z ).......(r
❖ 相位梯度方向与波矢量k方向一致,其模等于该点附近介 质折射率。
❖ 光线方程:
d ds
n(r )
dr
ds
n(r )
❖ 光线向折射率大的方向弯曲。
2.3 波导场方程
❖标量解法 ❖矢量解法
一、标量解法
1.标量近似
❖ 在弱导波光纤中,光线几乎与光纤轴平行。因此其
中的E和H几乎与光纤轴线垂直。 ❖ 横电磁波(TEM波):把E和H处在与传播方向垂直
第二章 光纤光学的基本方程
麦克斯韦方程与亥姆霍兹方程 程函方程与射线方程 波导场方程 模式及其基本性质
波动光学理论
❖ 用几何光学方法虽然可简单直观地得到光线在光 纤中传输的物理图象,但由于忽略了光的波动性 质,不能了解光场在纤芯、包层中的结构分布及 其它许多特性。
❖ 采用波动光学的方法,把光作为电磁波来处理, 研究电磁波在光纤中的传输规律,可得到光纤中 的传播模式、场结构、传输常数及截止条件。
d ds
dr ds
0
表示光线路径为直线。
例2:光线在折射率具有球对称分布媒质中的传播
❖ 球对称:折射率仅仅是半径r的函数
n n
❖ 射线方程:d
ds
r
n
dr ds
n
er
denrrdndrr
dr
推导光线走向的表达式如下:
展开射线方程:
d
r
n
d 2r ds 2
dr ds
dn ds
er
dnr
dr
d 2r ds 2
1
n
er
dnr
dr
dr ds
dn
ds
❖ 据其微大分小几就何是,路等径式曲左线侧的曲dds率。ddsr 是光线路径的曲率矢量,
❖ 令曲率矢量为:K
d 2r ds 2
1
R
eR
K
1
R
R是曲率半径,eR 是曲线主法线方向
❖ 代入光线方程展开式:
❖ 用 n 乘 K 有:
K
1
n
3.简谐时变场的波动方程—— 亥姆霍兹方程
❖ 光在光波导中传播应满足的亥姆霍兹方程式:
2E(x, y, z) k 2E(x, y, z) 0 2H (x, y, z) k 2H (x, y, z) 0
书P3(1.2-8)式
❖ 其中k=k0n为折射率为n的介质中的传播常数 (也叫波数)。k0为真空中的波数。
例1:光线在均匀媒质中的传播(如阶跃型光纤的纤心中)
d 射线方程:ds
n(r)
dr ds
n(r)
a
s
因 n = 常数
改写成:
d 2r n ds 2 0
b r
r 其解为矢量直线方程: sa b
a和b是常矢量,在均匀介质中光线路经沿矢量a前进,并通
过物理r=意b点义。:dds
dr ds
表示光线路径的曲率变化量。
一、 导波模
❖ 导波光是一种特定的电磁场分布,其传输必须满 足一定条件,称这种特定的电磁场分布为“模”。
❖ 导波模式分类:
x
H
E
yz
E
H
芯层 包层
TE横电模
EZ=0
E H
H E
芯层 包层
TM横磁模 HZ=0
❖ 导波模式分类:
光线
E B
❖混合模: EH Ez>Hz
HE Hz>Ez
二、纵向传播常数
ik0S r
e E0 r i[t k0S r ]
k0S r E0 r 0H0 r
Q r E0 r
0 k0
H0 r
0 00
H0 r
H0 r
❖ 由麦克斯韦方程其他三个方程同样处理,得到:
r E0 H0
r H0
n2
E0
(2.2a) (2.2b)
r • E0 0
(2.2c)
dS(r)
ds
dr ds
S r
式2.3
S r
n(r)
S
r
S r 2
n(r)
n(r)2
n(r)
n(r)
故对
S
求导式为: d ds
n(r)
dr ds
n(r) (2.4)
切线方向上的单位 光程沿路径变化率
射线方程
折射率梯度
射线方程是矢量方程,表示光线向折射率大的方向弯曲。 一旦给出折射率分布n(r),就可求出光线轨迹r的表达式。
▪ 由: E i0H
▪ 等式左边:
E {E0 e r i[t k0S r ]}
[e ik0S r E0 r E0 r e ik0S r ]e it
[ik0e ik0S r S r E0 r E0 r e ik0S r ]e it
0
k0
的横截面上的这种场分布称为是横电磁波,即TEM 波。 ❖ 因此可把一个大小和方向都沿传输方向变化的空间
矢量E变为沿传输方向其方向不变(仅大小变化)的
标量E。
2、分离变量
❖令
(x, y, z) (x, y)eiz
❖ 代入亥姆赫兹方程
2(x, y, z) k 2(x, y, z) 0
❖ 得到
t2(x ,y ) 2(x ,y ) 0
❖ 亥姆霍兹方程+边界条件可求出波导中光波场的 场分布。
❖ 用波动理论研究光纤中的电磁波行为,通常有两 种解法:
▪ 矢量解法
▪ 标量解法。
❖ 矢量解法是一种严格的传统解法,求满足边界条 件的波动方程的解。
❖ 标量解法是将光纤中传输的电磁波近似看成是与 光纤轴线平行的,在此基础上推导出光纤中的场 方程、特征方程并在此基础上分析标量模的特性。
n
r
ddθs
2n r r
dθ dr ds ds
0
( 2.5a ) ( 2.5b )
Z 分量
d ds
n
r
dz ds
0
( 2.5c)
设 x 0,y 0 为入射点, L0 ,M 0 , N0 为入射点方向余弦,
n0 为入射点折射率。
由上三式得光线轨迹(路径与z 的关系):
z
r
N 0dr
r0
r • H0 0
❖ 三个矢量正交,相位梯度与 ❖ 波面法线方向一致。
(2.2d)
E 相位梯度
H
❖ 利用光线理论的几何光学近似条件:
0,k0
❖ 将(2.2a)代入(2.2b) ❖ 得到
S r {S r E0} n 2E0 0
利用矢量恒等式
A B C A C B A B C
dn ds
❖ 上两矢量式点乘,第二项因两矢量正交为零,故有
K
1
R
eR
n r nr
❖ 因曲率半径eR 与er 夹角小于
2
;
n r n r
0时,eR
与er
夹角大于
2
;
eR
❖ 即光线前进时,向折射率高的一侧弯曲。
n’ n dr/ds
n’ >n
2.1 麦克斯韦方程与亥姆霍兹方程
1.电磁场的基本方程式 2.电磁波的波动现象 3.简谐时变场的波动方程——亥姆霍兹方程
1.电磁场的基本方程式
❖ 麦克斯韦方程式的微分形式
H
D t
J
•时变磁场可以产生时变电场
E B t
B 0
•时变电场可以产生时变磁场 •磁场是无源的
D
•电场是有源的
光纤中不存在电流和自由电荷,则有: D 0, J 0
▪ 在均匀介质中,光波传输方向不变; ▪ 在非均匀介质中,光波传输方向随折射率变; ▪ 若已知折射率分布,则可求出程函方程,从而根据等
相面确定光线轨迹。
2、射线方程
r :光线传播路径S上某点的矢径
dr/ds:传播路径切线方向上单位矢量,
根据相位梯度的定义,矢量dr/ds方向与相位梯度方向
一致,大小等于: dr ds
❖ 对应于每一阶贝塞尔函数(m取某一确定整数), 都存在多个解(以n=1,2,…表示),记为βmn。
❖ 每一个βmn值对应于一个能在光纤中传输的光场 的模式。
❖ 根据不同的m与n的组合,光纤中将存在许多模式, 记为HEmn或EHmn。