当前位置:文档之家› 谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明引言众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述.1罗尔()Rolle中值定理如果函数()xf满足条件:()1在闭区间[]b a,上连续;()2在开区间()b a,内可导;(3)()()b faf=,则在()b a,内至少存在一点ζ ,使得()0'=ζf罗尔中值定理的几何意义:如果连续光滑曲线()xfy=在点BA,处的纵坐标相等,那么,在弧 ⋂AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1,注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()ab a f b f f --=ζ'拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ⋂AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2,从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理教材证法证明 作辅助函数 ()()()()f b f a F x f x x b a-=--显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使()()()()0''=---=a b a f b f f F ζζ.即()()()ab a f b f f --=ζ'. 用作差法引入辅助函数法证明 作辅助函数 ()()()()()()⎥⎦⎤⎢⎣⎡---+-=a x a b a f b f a f x f x ϕ 显然,函数()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ϕϕ,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得()()()()0''=---=a b a f b f f ζζϕ,即 ()()()ab a f b f f --=ζ'推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ϕ,因为直线OT 的斜率与直线AB 的斜率相同,即有:()()a b a f b f K K AB OT --==,OT 的直线方程为:()()x ab a f b f y --=,于是引入的辅助函数为:()()()()x ab a f b f x f x ---=ϕ. (证明略) 推广2 如图4过点()O a ,作直线''B A ∥AB ,直线''B A 的方程为:()()()a x ab a f b f y ---=,由()x f 与直线函''B A 数之差构成辅助函数()x ϕ,于是有:()()()()()a x a b a f b f x f x ----=ϕ. (证明略) 推广3 如图5过点作()O b ,直线''B A ∥AB ,直''B A 线的方程为()()()b x ab a f b f y ---=,由()x f 与直线A B ''函数之差构成辅助函数()x ϕ,于是有:()()()()()b x ab a f b f x f x ----=ϕ. 事实上,可过y 轴上任已知点()m O ,作//B A ∥AB 得直线为()()m x ab a f b f y +--=,从而利用()x f 与直线的''B A 函数之差构成满足罗尔中值定理的辅助函数()x ϕ都可以用来证明拉格朗日中值定理. 因m 是任意实数,显然,这样的辅助函数有无多个.用对称法引入辅助函数法在第二种方法中引入的无数个辅助函数中关于x 轴的对称函数也有无数个,显然这些函数也都可以用来证明拉格朗日中值定理.从几何意义上看,上面的辅助函数是用曲线函数()x f 减去直线函数,反过来,用直线函数减曲线函数()x f ,即可得与之对称的辅助函数如下: ⑴ ()()()()()()x f a x a b a f b f a f x -⎥⎦⎤⎢⎣⎡---+=ϕ ⑵ ()()()()x f x a b a f b f x ---=ϕ⑶ ()()()()()x f a x a b a f b f x ----=ϕ ⑷ ()()()()()x f b x ab a f b f x ----=ϕ 等等.这类能用来证明拉格朗日中值定理的辅助函数显然也有无数个. 这里仅以⑵为例给出拉格朗日中值定理的证明.证明 显然,函数()x ϕ满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;()3()()()()ab a bf b af b a --==ϕϕ.由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()()()0''=---=ζζϕf ab a f b f ,从而有()()()ab a f b f f --=ζ',显然可用其它辅助函数作类似的证明. 转轴法由拉格朗日中值定理的几何图形可以看出,若把坐标系xoy 逆时针旋转适当的角度α,得新直角坐标系XOY ,若OX 平行于弦AB ,则在新的坐标系下()x f 满足罗尔中值定理,由此得拉格朗日中值定理的证明.证明 作转轴变换ααsin cos Y X x -=,ααcos sin Y X y +=,为求出α,解出Y X ,得()()x X x f x y x X =+=+=ααααsin cos sin cos ① ()()x Y x f x y x Y =+-=+-=ααααcos sin cos sin ② 由()()b Y a Y =得 ()()ααααcos sin cos sin b f b a f a +-=+-,从而()()ab a f b f --=αtan ,取α满足上式即可.由()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,知()x Y 在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()b Y a Y =,因此,由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()()0cos sin '=+-=αζαζf Y ,即()()()ab a f b f f --==αζtan ' 用迭加法引入辅助函数法让()x f 迭加一个含待顶系数的一次函数m kx y +=,例如令()()()m kx x f x +-=ϕ或()()m kx x f x ++-=ϕ,通过使()()b a ϕϕ=,确定出m k ,,即可得到所需的辅助函数.例如由 ()()()m kx x f x +-=ϕ,令()()b a ϕϕ=得()()()()m kb b f m ka a f +-=+-,从而()()ab a f b f k --=,而m 可取任意实数,这样我们就得到了辅助函数()()()m x ab a f b f x ---=ϕ,由m 的任意性易知迭加法可构造出无数个辅助函数,这些函数都可用于证明拉格朗日中值定理.用行列式引入辅助函数法证明 构造一个含()x f 且满足罗尔中值定理的函数()x ϕ,关键是满足()()b a ϕϕ=.我们从行列式的性质想到行列式()()()111x f x af a bf b 的值在,x a x b ==时恰恰均为0,因此可设易证()()()()111xf x x af a bf b ϕ=,展开得 ()()()()()()()x f b x bf a af x af b f a x bf x ϕ=++---.因为()x f 在闭区间[]b a ,上连续,在开区间()b a ,内可导,所以()x ϕ在闭区间[]b a ,上连续,在开区间()b a ,内可导,且()()0a b ϕϕ==,所以由罗尔中值定理知,至少存在一点()b a ,∈ζ,使得()0'=ζϕ. 因为()()()()()0''=---=ζζϕf b a b f a f即: ()()()ab a f b f f --=ζ' 数形相结合法引理 在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别为()(),A a f a ,()(),B b f b ,()(),C c f c ,则ABC ∆面积为()()()1112ABC af a S b f b a cf c ∆=, 这一引理的证明在这里我们不做介绍,下面我们利用这一引理对拉格朗日中值定理作出一种新的证明. 这种方法是将数形相结合,考虑实际背景刻意构造函数使之满足罗尔中值定理的条件.如图, 设()(),c f c 是直线AB 与()y f x =从A 点开始的第一个交点,则构造()()()()211141af a x c f c x f x ϕ=, 易验证()x ϕ满足罗尔中值定理的条件:在闭区间[],a c 上连续,在开区间(),a c 内可导,而且()()b a ϕϕ=,则至少存在一点()b a ,∈ζ,使()/0ϕζ=,即:()()()()()()01111111'=ζζζf c f c a f a f c f c a f a 但是()()()1101af a cf c f ζζ≠,这是因为,如果 ()()()1101a f a c f c f ζζ=, 则()()()()f f c f c f a c c aζζ--=--,这样使得()(),f ζζ成为直线AB 与()y f x =从A 点的第一个交点,与已知矛盾).故()()()0111=ζζf c f ca f a,即()()()()()ac a f c f a b a f b f f --=--=ζ'. 若只从满足罗尔中值定理的要求出发,我们可以摈弃许多限制条件,完全可以构造()()()()111af a x bf b xf x ϕ=来解决问题,从而使形式更简洁,而且启发我们做进一步的推广:可构造()()()()()()()111g a f a x g b f b g x f x ϕ=来证明柯西中值定理.区间套定理证法证明 将区间[],I a b =二等分,设分点为1ζ,作直线1x ζ=,它与曲线()y f x = 相交于1M ,过1M 作直线11L M ∥弦b a M M . 此时,有如下两种可能:⑴ 若直线11M L 与曲线()y f x =仅有一个交点1M ,则曲线必在直线11M L 的一侧.否则,直线11M L 不平行于直线a b M M . 由于曲线()y f x =在点1M 处有切线,根据曲线上一点切线的定义,直线11M L 就是曲线()y f x =在点1M 处的切线,从而()()()ab a f b f f --=1ζ.由作法知,1ζ在区间(),a b 内部,取ζζ=1于是有 ()()()ab a f b f f --=ζ⑵ 若直线11M L 与曲线()y f x =还有除1M 外的其他交点,设()111,N x y 为另外一个交点,这时选取以11,x ξ为端点的区间,记作[]111,I a b =,有1,112b a l I b a -⊇-<,()()()()1111f b f a f b f a b a b a--=--,把1I 作为新的“选用区间”,将1I 二等分,并进行与上面同样的讨论,则要么得到所要求的点ζ,要么又得到一个新“选用区间”2I .如此下去,有且只有如下两种情形中的一种发生:(a) 在逐次等分“选用区间”的过程中,遇到某一个分点k ζ,作直线k x ζ=它与曲线()y f x =交于k M ,过点k M 作直线k k L M ∥弦b MM , 它与曲线()y f x =只有一个交点k M ,此时取ζζ=k 即为所求.(b) 在逐次等分“选用区间”的过程中,遇不到上述那种点,则得一闭区间序列{n I },满足:① 12I I I ⊇⊇⊇ []n n n b a I ,=② ()02n n n b ab a n --<→→∞ ③()()()()n n n n f b f a f b f a b a b a--=-- 由①②知,{n I }构成区间套,根据区间套定理,存在唯一的一点() 3,2,1=∈n I n ζ,此点ζ即为所求. 事实上ζ==∞→∞→n n n n b a lim lim ,()f ξ存在()()()ζf a b a f b f n n n n n =--∞→lim ,由③lim n →∞()()()()n n n n f b f a f b f a b a b a --=--,所以()()()ab a f b f f --=ζ,从“选用区间”的取法可知,ζ确在(),a b 的内部. 旋转变换法证明 引入坐标旋转变换A : cos sin x X Y αα=- ⑴ ααcos sin Y X y += ⑵因为 22cos sin cos sin 10sin cos αααααα-∆==+=≠所以A 有逆变换/A :()()cos sin cos sin X x y x f x X x αααα=+=+= ⑶()()sin cos sin cos Y x y x f x Y x αααα=-+=-+= ⑷ 由于()x f 满足条件: ()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导,因此⑷式中函数()Y x 在闭区间[]b a ,上连续,在开区间()b a ,内可导.为使()Y x 满足罗尔中值定理的第三个条件,只要适当选取旋转角α,使()()Y a Y b =, 即()()sin cos sin cos a f a b f b αααα-+=-+,也即()()tan f b f a b a α-=-. 这样,函数()Y x 就满足了罗尔中值定理的全部条件,从而至少存在一点()b a <<ζζ,使()()0cos sin =+=αζαζf Y 即()αζtan =f . 由于所选取旋转角α满足()()a b a f b f --=αtan ,所以()()()ab a f b f f --=ζ.结论本论文仅是对拉格朗日中值定理的证明方法进行了一些归纳总结其中还有很多方法是我没有想到的,而且里面还有很多不足之处需要进一步的修改与补充. 通过这篇论文我只是想让人们明白数学并不是纯粹的数字游戏,里面包含了很多深奥的内容. 而且更重要的是我们应该学会去思考,学会凡是多问几个为什么,不要让自己仅仅局限于课本上的内容,要开动脑筋学会举一反三,不要单纯为了学习而学习,让自己做知识的主人!总之,数学的发展并非是无可置疑的,也并非是反驳的复杂过程,全面的思考问题有助于我们思维能力的提高,也有助于创新意识的培养.参考文献[1] 华东师范大学数学系. 数学分析(上册)(第二版)[M].北京:高等教育出版社.1991:153-161[2] 吉林大学数学系. 数学分析(上册)[M].北京:人民教育出版社.1979:194-196[3] 同济大学应用数学系. 高等数学(第一册)[M].北京:高等教育出版社(第五版).2004:143-153[4] 周性伟,刘立民. 数学分析[M].天津:南开大学出版社.1986:113-124[5] 林源渠,方企勤. 数学分析解题指南[M].北京:北京大学出版社.2003:58-67[6] 孙清华等. 数学分析内容、方法与技巧(上)[M].武汉:华中科技大学出版社.2003:98-106[7] 洪毅. 数学分析(上册)[M].广州:华南理工大学出版社.2001:111-113[8] 党宇飞. 促使思维教学进入数学课堂的几点作法[J].上海:数学通报.2001,1:15-18[9] 王爱云. 高等数学课程建设和教学改革研究与实践[J].西安:数学通报.2002,2:84-88[10] 谢惠民等. 数学分析习题课讲义[M].北京:高等教育出版社.2003:126-135[11] 刘玉莲,杨奎元等. 数学分析讲义学习指导书(上册)[M].北京:高等教出版社.1994:98-112[12] 北京大学数学力学系. 高等代数. 北京:人民教育出版社. 1978:124-135[13] 裴礼文. 数学分析中的典型问题与方法[M].北京:高等教育出版社.1993:102-110[14] 郑琉信.数学方法论[M].南京:广西教育出版社.1996:112-123[15] 陈传璋等. 数学分析(上册)[M].北京:人民教育出版社.1983:87-92[16] 李成章,黄玉民. 数学分析(上)[M].北京:科学出版社.1995:77-86附 录柯西中值定理若 ⑴ 函数()f x 与()g x 都在闭区间[]b a ,上连续;⑵ ()x f '与()x g '在开区间()b a ,内可导;⑶ ()x f ' 与()x g '在()b a ,内不同时为零;⑷ ()()g a g b ≠,则在()b a ,内至少存在一点ζ,使得()()()()a b a f b f g f --=ζζ''. 区间套定理若[]{},n n a b 是一个区间套,则存在唯一一点ζ,使得[],n n a b ζ∈,1,2,n = 或 n n a b ζ≤≤,1,2,n =。

相关主题