当前位置:文档之家› 电磁场与电磁波课后习题及答案--第四章习题解答

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a a ππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩L L ,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a a ππϕππ==∑L4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到d y =,电位线性变化,0(0,)y U y d ϕ=。

a题4.1图解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到(,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑ 4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。

并按202U W C ef =定出边缘电容。

解 在导体板(0=y )上,相应于2(,)x y ϕ的电荷面密度题 4.2图002200121sin()e n x by n U n d yd n b πεϕπσεπ∞-==∂=-=-∂∑则导体板上(沿z 方向单位长)相应的总电荷2220d 2d q x x σσ∞∞-∞===⎰⎰001022sin()e d n x b n U n d x n d b πεππ∞∞-=-=∑⎰0022141sin()n U b n d d n b εππ∞=-∑相应的电场储能为 20020221211sin()2e n bU n dW q U d n b εππ∞===-∑其边缘电容为022210241sin()e f n W b n dC U d n b εππ∞===∑ 4.4 如题4.4图所示的导体槽,底面保持电位U ,其余两面电位为零,求槽内的电位的解。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ==② (,)0()x y y ϕ→→∞ ③0(,0)x U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sin()n n n y a n xx y A e a ππϕ∞-==∑由条件③,有01sin()n n n xU A a π∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到002sin()d an U n x A x a a π==⎰02(1cos )U n n ππ-=04,1,3,5,02,4,6,U n n n π⎧=⎪⎨⎪=⎩L L,故得到槽内的电位分布为1,3,5,41(,)sin()n y a n U n xx y e n a ππϕπ-==∑L题4.4图a4.5 一长、宽、高分别为a 、b 、c 的长方体表面保持零电位,体积内填充密度为()sin()sin()xzy y b ac ππρ=-的电荷。

求体积内的电位ϕ。

解 在体积内,电位ϕ满足泊松方程22222201()sin()sin()x zy y b x y z a c ϕϕϕππε∂∂∂++=--∂∂∂ (1)长方体表面S 上,电位ϕ满足边界条件Sϕ=。

由此设电位ϕ的通解为1111(,,)sin()sin()sin()mnp m n p m x n y p zx y z A a b cπππϕε∞∞∞====∑∑∑代入泊松方程(1),可得222111[()()()]mnp m n p m n p A a b c πππ∞∞∞===++⨯∑∑∑sin()sin()sin()m x n y p z a b c πππ=()sin()sin()x z y y b a c ππ-由此可得mnp A = (1m ≠或1)p ≠222111[()()()]sin()n p n n y A a b c b ππππ∞=++=∑()y y b - (2) 由式(2),可得2221102[()()()]()sin()d bn n n yA y y b y a b c b b ππππ++=-=⎰34()(cos 1)b n b n ππ-=2381,3,5,()02,4,6,b n n n π⎧-=⎪⎨⎪=⎩L L故2532221,3,5,081(,,)sin()sin()sin()11[()()()]n b x n y zx y z n a b c n a b c πππϕπε∞==-++∑L4.6 如题4.6图所示的一对无限大接地平行导体板,板间有一与z 轴平行的线电荷lq ,其位置为),0(d 。

求板间的电位函数。

解 由于在(0,)d 处有一与z 轴平行的线电荷lq ,以0x =为界将场空间分割为0x >和0x <两个区域,则这两个区域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x =的分界面上,可利用δ函数将线电荷lq 表示成电荷面密度0()()l y q y y σδ=-。

电位的边界条件为①11(,0)(,)0x x a ϕϕ==22(,0)(,)0x x a ϕϕ==②1(,)0x y ϕ→()x →∞2(,)0x y ϕ→()x →-∞③12(0,)(0,)y y ϕϕ=21()()lx q y d x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()n n n x a n y x y A e a ππϕ∞=-=∑ (0)x >21(,)sin()n n n x a n yx y B e a ππϕ∞==∑ (0)x <由条件③,有1sin()nn n y A a π∞==∑1sin()n n n yB a π∞=∑ (1) 1sin()n n n n yA a a ππ∞=--∑1sin()nn n n yB a a ππ∞=∑ 0()l q y d δε=- (2)由式(1),可得n nA B = (3)将式(2)两边同乘以sin()m ya π,并从0到a 对y 积分,有题 4.6图n nA B +02()sin()d a l q n y y d y n a πδπε=-=⎰02sin()l q n d n a ππε (4)由式(3)和(4)解得sin()l n n q n dA B n a ππε==故1101(,)sin()sin()ln n x a q n d n y x y e n a a πππϕπε∞=-=∑ (0)x >2101(,)sin()sin()ln n x a q n d n yx y e n a a πππϕπε∞==∑ (0)x < 4.7 如题4.7图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷lq 。

求槽内的电位函数。

解 由于在),(00y x 处有一与z 轴平行的线电荷lq ,以x x =为界将场空间分割为00x x <<和0x x a<<两个区域,则这两个区),(00y x 域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x x =的分界面上,可利用δ函数将线电荷l q 表示成电荷面密度0()()l y q y y σδ=-,电位的边界条件为① 1(0,)0y =ϕ,2(,)0a y ϕ=② 11(,0)(,)0x x b =ϕϕ=22(,0)(,)0x x b =ϕϕ= ③1020(,)(,)x y x y ϕϕ=2100()()lx x q y y x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()sinh()n n n y n xx y A b b ππϕ∞==∑ )0(0x x <<题4.7图2(,)x y ϕ=1sin()sinh[()]nn n y n Ba xb b ππ∞=-∑)(0a x x <<由条件③,有0011sin()sinh()sin()sinh[()]n nn n n x n y n y n A B a x b b b b ππππ∞∞===-∑∑ (1) 01sin()cosh()nn n x n n y A b b b πππ∞=-∑01sin()cosh[()]n n n n y n B a x b b b πππ∞=-∑ )(00y y q l -δε= (2)由式(1),可得00sinh()sinh[()]0n n n x n A B a x b b ππ--= (3)将式(2)两边同乘以sin()m yb π,并从0到b 对y 积分,有)](cosh[)cosh(00x a b n B b x n A n n -π+π0002()sin()d b l q n yy y y n b πδπε=-=⎰02sin()l q n y n b ππε (4)由式(3)和(4)解得00021sinh[()]sin()sinh()l n q n y n A a x n a b n b b ππππε=-00021sinh()sin()sinh()l n q n x n y B n a b n b b ππππε=故101021(,)sinh[()]sinh()ln q n x y a x n n a b b πϕπεπ∞==-∑0sin()sinh()sin()n y n x n yb b b πππ⋅ )0(0x x <<2121(,)sinh()sinh()ln q n x x y n n a b bπϕπεπ∞==∑0sin()sinh[()]sin()n y n n ya xb b b πππ⋅- )(0a x x << 若以y y =为界将场空间分割为0y y <<和0y y b<<两个区域,则可类似地得到101021(,)sinh[()]sinh()ln q n x y b y n n b a a πϕπεπ∞==-∑ 0sin()sinh()sin()n x n y n xa a a πππ⋅ 0(0)y y <<021021(,)sinh()sinh()ln q n y x y n n b a a πϕπεπ∞==∑ 0sin()sinh[()]sin()n x n n xb y a a a πππ⋅- 0()y y b <<4.8 如题4.8图所示,在均匀电场00x E E e =中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为a 。

相关主题