当前位置:文档之家› 向量法解立体几何及经典例题(上课用)

向量法解立体几何及经典例题(上课用)

向量法解立体几何1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.⑵.平面的法向量: 若向量n 所在直线垂直于平面α,则称这个向量垂直于平面α,记作n α⊥,如果n α⊥,那么向量n 叫做平面α的法向量.⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面α的法向量为(,,)n x y z =.③求出平面内两个不共线向量的坐标123123(,,),(,,)a a a a b b b b ==.④根据法向量定义建立方程组0n a n b ⎧⋅=⎪⎨⋅=⎪⎩.⑤解方程组,取其中一组解,即得平面α的法向量.例1:在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量.2、用向量方法判定空间中的平行关系⑴线线平行。

设直线12,l l 的方向向量分别是a b 、,则要证明1l ∥2l ,只需证明a ∥b ,即()a kb k R =∈.例2: 四棱锥P-ABCD 中,底面ABCD 是正方形, PD ⊥底面ABCD ,PD=DC=6, E 是PB的中点,DF:FB=CG:GP=1:2 . 求证:AE//FG.⑵线面平行。

设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a u ⊥,即0a u ⋅=.例3:如图,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,延长A 1C 1至点P ,使C 1P =A 1C 1,连接AP 交棱CC 1于D .求证:PB 1∥平面BDA 1;⑶面面平行。

若平面α的法向量为u ,平面β的法向量为v ,要证α∥β,只需证u ∥v ,即证u v λ=.例4:在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .3、用向量方法判定空间的垂直关系⑴线线垂直。

设直线12,l l 的方向向量分别是a b 、,则要证明12l l ⊥,只需证明a b ⊥,即0a b ⋅=.例5:如图,已知正三棱柱A B C -111A B C 的底面边长为2,侧棱长为32,点E 在侧棱1A A 上,点F 在侧棱1B B 上,且22A E =,2BF = 求证:1C F C E ⊥;⑵线面垂直①(法一)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l α⊥,只需证明a ∥u ,即a u λ=.②(法二)设直线l 的方向向量是a ,平面α内的两个相交向量分别为m n 、,若0,.0a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则 例6:如图,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1中点。

求证:AB 1⊥面A 1BD ;⑶面面垂直。

若平面α的法向量为u ,平面β的法向量为v ,要证αβ⊥,只需证u v ⊥,即证0u v ⋅=.例7:如图,已知四棱锥P-ABCD ,底面ABCD 是菱形,∠DAB=600,PD ⊥平面ABCD ,PD=AD ,点E 为AB 中点,点F 为PD 中点。

证明平面PED ⊥平面PAB ;4、利用向量求空间角QMA BDCOP⑴求异面直线所成的角已知,a b 为两异面直线,A ,C 与B ,D 分别是,a b 上的任意两点,,a b 所成的角为θ,则cos .AC BD AC BDθ⋅=例8:如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的 菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点。

求异面直线AB 与MD 所成角的大小;⑵求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角 的余角.即有:cos s .in a u a uϕθ⋅==例9:在棱长为a 的正方体''''ABCD A B C D -中,EF 分别是'',BC A D 的中点,求直线AD 与平面'B EDF 所成的角的余弦值,'DABCDEFG'A 'B'Cxyz⑶求二面角二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l AO ⊥,β-l 的平面角.如图:求法:设二面角l αβ--的两个半平面的法向量分别为m n 、,再设m n 、的夹角为ϕ,二面角l αβ--的平面角为θ,则二面角θ为m n 、的夹角ϕ或其补角.πϕ- 根据具体图形确定θ是锐角或是钝角: 如果θ是锐角,则cos cos m n m nθϕ⋅==, 即arccosm n m nθ⋅=;如果θ是钝角,则cos cos m nm nθϕ⋅=-=-, 即arccos m n m n θ⎛⎫⋅ ⎪=-⎪⎝⎭. 例10:如图,在底面是直角梯形的四棱锥S-ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD .求面SCD 与面SBA 所成的二面角的正切值.5、利用法向量求空间距离 ⑴点Q 到直线l 距离若Q 为直线l 外的一点,P 在直线l 上,a 为直线l 的方向向量,b =PQ ,则点Q 到直线l距离为 221(||||)()|h a b a b a =-⋅ ⑵点A 到平面α的距离若点P 为平面α外一点,点M 为平面α内任一点,平面α的法向量为n ,则P 到平面α的距离就等于MP 在法向量n 方向上的投影的绝对值.即cos ,d MP n MP=n MP MP n MP⋅=⋅n MP n⋅=例11:设(2,3,1),(4,1,2),(6,3,7),(5,4,8)A B C D --,求点D 到平面ABC 的距离⑶直线a 与平面α之间的距离当一条直线和一个平面平行时,直线上的各点到平面的距离相等。

由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离。

即.n MP d n⋅=例12:如图,在长方体1111ABCD A B C D -中,14,3,2,AB BC CC ===求平面11A BC 与平面1ACD 的距离。

y⑷两平行平面,αβ之间的距离利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离。

即.n MP d n⋅=⑸异面直线间的距离设向量n 与两异面直线,a b 都垂直,,,M a P b ∈∈则两异面直线,a b 间的距离d 就是MP 在向量n 方向上投影的绝对值。

即.n MP d n⋅=例13:正方体1111ABCD A B C D -的棱长为1,求异面直线11A C 与1AB 间的距离.y高考大题赏析:1、(2017年1卷18题)如图,在四棱锥P ABCD -中,AB CD ∥中,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,求二面角A PB C --的余弦值.2.(2018年1卷18题)△折如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC 起,使点C到达点P的位置,且PF BF⊥.⑴证明:平面PEF⊥平面ABFD;⑵求DP与平面ABFD所成角的正弦值.3(2019年1卷18题)(12分)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB =2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.4.(2020年1卷18题)(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,66PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.例3:证明:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .(Ⅰ)在△P AA 1中有1112C D AA =,即1(0,1,)2D . ∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-. 设平面BA 1D 的一个法向量为1(,,)a b c =n ,则11110,10.2A B a c A D b c ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令1c =-,则11(1,,1)2=-n . ∵1111(1)2(1)002B P ⋅=⨯-+⨯+-⨯=n ,∴PB 1∥平面BA 1D例4:证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ⎝ ⎛⎭⎪⎫a 2,1,4,F (0,1,4),则EG =⎝ ⎛⎭⎪⎫a 2,1,1,EF =(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF . 又EG ∩EF =E ,因此B 1D ⊥平面EGF . 结合(1)可知平面EGF ∥平面ABD .例5:证明:建立如图所示的空间直角坐标系,则由已知可得1(0,0,0),(3,1,0),(0,2,0),(0,2,32),(0,0,22),(3,12)A B C C E F (Ⅰ)1(0,2,2),(3,12)C E CF =--=- 10220C E CF ⋅=+-=1.CF C E ∴⊥例6:解:取BC 中点O ,连结AO .ABC △为正三角形,AO BC ∴⊥.在正三棱柱111ABC A B C -中,平面ABC ⊥平面11BCC B ,AD ∴⊥平面11BCC B .取11B C 中点1O ,以O 为原点,OB ,1OO ,OA 的方向为x y z ,,轴的正方向建立空间直角坐标系,则(100)B ,,,(110)D -,,,1(023)A ,,,03)A ,,, 1(120)B ,,,1(123)AB ∴=,,(210)BD =-,,,1(123)BA =-,,.xzA B CD1A 1C1BO Fy12200AB BD =-++=,111430AB BA =-+-=, 1AB BD ∴⊥,11AB BA ⊥.1AB ∴⊥平面1A BD .例7:证明:∵面ABCD 是菱形,∠DAB=600,∴△ABD 是等边三角形,又E 是AB 中点,连结BD ∴∠EDB=300,∠BDC=600,∴∠EDC=900, 如图建立坐标系D-ECP ,设AD=AB=1,则PF=FD=12,∴ P (0,0,1),E,0,0),B ,12,0) ∴PB =(2,12,-1),PE = (2,0,-1), 平面PED 的一个法向量为DC =(0,1,0) ,设平面PAB 的法向量为n =(x, y, 1)由11(,,1),1)010220(,,1)1)010x y x y x n PB n PE y x y x ⎧⎧•-=--=⎪⎧=⊥⎪⎪⎪⇒⇒⇒⎨⎨⎨⊥⎪⎪⎪⎩=•-=-=⎩⎪⎩ ∴n =∵DC ·n =0 即DC ⊥n ∴平面PED ⊥平面PAB例8:方法一(综合法)(1)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CD P ⊥于连接MP ⊥⊥平面A B C D ,∵OA ∴CD MP,42ADPπ∠=∵∴DP =MD ==∵1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴所以 AB 与MD 所成角的大小为3π方法二(向量法)作AP CD ⊥于点P,如图,分别以AB,AP,AO 所在直线为,,x y z 轴建立坐标系222(0,0,0),(1,0,0),(0,,0),(,,0),(0,0,2),(0,0,1)222A B P D O M -,(1)设AB 与MD 所成的角为θ,22(1,0,0),(,,1)22AB MD ==--∵ 1cos ,23AB MDAB MD πθθ===⋅∴∴ ,∴AB 与MD 所成角的大小为3π 例9:解:,ADE ADF ∠=∠所以AD 在平面'B EDF 内的射影在EDF ∠的平分线上,又'B EDF 为菱形,'DB ∴为EDF ∠的平分线,故直线AD 与平面'B EDF 所成的角为'ADB ∠,建立如图所示坐标系, 则'(0,0,0),(,0,),(0,,0)A B a a D a ,'(0,,0),(,,)DA a DB a a a ∴=-=-,'''3cos ,3DA DB DA DB DA DB •∴<>==• 故AD 与平面'B EDF 所成角为例10:解:如图建立直角坐标系,则1(0,1,0),(,0,0),(1,1,0),(0,0,1)2B D C S11(,0,0),(1,1,1),(,0,1)22AD SC SD ==-=-,,SA ABCD AD SAB ⊥∴⊥平面平面所以AD 是平面SAB 的一个法向量。

相关主题