当前位置:文档之家› 核磁共振成像仪

核磁共振成像仪

核磁共振成像仪核磁共振成像仪概述核磁共振(MRI)又叫核磁共振成像技术。

核磁共振成像仪就是因这项技术而产生的仪器。

它是继CT后医学影像学的又一重大进步。

自80年代应用以来,它以极快的速度得到发展。

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学、生物等领域,到1973年才将它用于医学临床检测。

为了避免与核医学中放射成像混淆,把它称为核磁共振成像技术发展历史1930年代,物理学家伊西多•拉比发现在磁场中的原子核会沿磁场方向呈正向或反向有序平行排列,而施加无线电波之后,原子核的自旋方向发生翻转。

这是人类关于原子核与磁场以及外加射频场相互作用的最早认识。

由于这项研究,拉比于1944年获得了诺贝尔物理学奖。

1946年,美国哈佛大学的珀塞尔和斯坦福大学的布洛赫发现,将具有奇数个核子(包括质子和中子)的原子核置于磁场中,再施加以特定频率的射频场,就会发生原子核吸收射频场能量的现象,这就是人们最初对核磁共振现象的认识。

为此他们两人获得了1952年度诺贝尔物理学奖。

人们在发现核磁共振现象之后很快就产生了实际用途,早期核磁共振主要用于对核结构和性质的研究,如测量核磁矩、电四极距、及核自旋等,化学家利用分子结构对氢原子周围磁场产生的影响,发展出了核磁共振谱,用于解析分子结构,随着时间的推移,核磁共振谱技术不断发展,从最初的一维氢谱发展到碳谱、二维核磁共振谱等高级谱图,核磁共振技术解析分子结构的能力也越来越强,进入1990年代以后,人们甚至发展出了依靠核磁共振信息确定蛋白质分子三级结构的技术,使得溶液相蛋白质分子结构的精确测定成为可能。

后来核磁共振广泛应用于分子组成和结构分析,生物组织与活体组织分析,病理分析、医疗诊断、产品无损监测等方面。

20世纪70年代,脉冲傅里叶变换核磁共振仪出现了,它使13C谱的应用也日益增多。

用核磁共振法进行材料成分和结构分析有精度高、对样品限制少、不破坏样品等优点。

基本原理核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的运动。

根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:质量数和质子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子核,自旋量子数为半整数;质量数为偶数,质子数为奇数的原子核,自旋量子数为整数。

迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有:1H、11B、13C、17O、19F、31P。

由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。

将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。

进动具有能量也具有一定的频率。

原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。

当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。

这种能级跃迁是获取核磁共振信号的基础。

为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。

根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。

因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

主要参数1.化学位移同一种核在分子中因所处的化学环境不同,使共振频率发生位移的现象。

化学位移产生的原因是分子中运动的电子在外磁场下对核产生的磁屏蔽。

屏蔽作用的大小可用屏蔽因子σ来表示。

一般来说屏蔽因子σ是一个二阶张量,只有在液体中由于分子的快速翻滚,化学位移的各向异性被平均,屏蔽因子才表现为一常量。

核磁共振的共振频率:实际测定中化学位移是以某一参考物的谱线为标准,其他谱线都与它比较,即以一无因次的量δ表示化学位移的大小。

常用参考物是四甲基硅(TMS)。

H参考,H样品分别是使参考物和被测样品共振的磁场强度,Ho是仪器工作的磁场强度。

v参考,v样品分别是参考物和被测样品的共振频率Vo是仪器的工作频率,化学位移的单位是(ppm百万分之一)。

化学位移的大小受邻近基团的电负性、磁各向异性、芳环环流、溶剂、pH值、氢键等许多因素的影响。

其中有3种效应常被用于生物学研究。

①环流效应:生物分子中常有含大π共轭电子云的芳环或芳杂环,如Phe、His、Tyr、Trp、嘌呤、嘧啶以及卟啉环。

原子核相对于这些环的距离,方位不同,受大π电子云产生的附加磁场的影响不同,对各核化学位移的影响亦不同。

环流效应常用于生物分子的溶液构象研究。

②顺磁效应:Fe2(高自旋态)、CO2、Mn2等顺磁离子及有机自由基(自旋标记化合物)中的不成对电子对周围核的化学位移及弛豫过程会有很大的影响,利用这个效应可研究顺磁离子周围基团的状况。

③pH滴定效应:在不同pH条件下,各解离基团的解离状况不一,造成附近基团有不同的化学环境,从而使得化学位移随pH变化。

2.耦合常数核与核之间以价电子为媒介相互耦合引起谱线分裂的现象称为自旋裂分。

由于自旋裂分形成的多重峰中相邻两峰之间的距离被称为自旋--自旋耦合常数,用J表示。

耦合常数用来表征两核之间耦合作用的大小,具有频率的因次,单位是赫兹。

一般来说由于自旋耦合使高分辨核磁共振波谱变得十分复杂,但是当化学位移之差Δγ远大于耦合常数时,一个含有n个自旋量子数为1I2的核的基团将会使其邻近基团中核的吸收峰分裂为2n 1重峰,并且这2n 1重峰的强度分布服从二项式系数分配公式(1 x)n。

此为一级分裂波谱。

图1中各峰由于自旋耦合而产生谱线裂分。

耦合常数的大小与外加磁场的大小无关,与分子结构有关即与两核之间键的数目及电子云的分布有关。

一般来说,两核之间相隔3个以上的化学键之间的耦合被称为远程耦合,J值很小。

如果两核之间相隔四个或四个以上的单键,J值基本上等于零。

3.谱峰强度信号强度是核磁共振谱的第三个重要信息,处于相同化学环境的原子核在核磁共振谱中会显示为同一个信号峰,通过解析信号峰的强度可以获知这些原子核的数量,从而为分子结构的解析提供重要信息。

表征信号峰强度的是信号峰的曲线下面积积分,即吸收峰积分曲线的高度与产生该吸收峰基团的粒子数成正比。

图1中苯环间位质子峰,苯环邻位质子峰,α-CH质子峰,β-CH质子峰的积分强度之比为2∶2∶1∶2。

这一信息对于1H-NMR谱尤为重要,而对于13C-NMR谱而言,由于峰强度和原子核数量的对应关系并不显著,因而峰强度并不非常重要。

4.弛豫参数从微观机制上说,弛豫是由局部涨落磁场所引起的。

偶极-偶极相互作用、分子转动、化学位移各向异性、邻近存在电四极核等等,都可以产生局部磁场。

而固体中的晶格震动,液体中的Brown运动等,使得局部磁场将随时间涨落。

弛豫过程的特性取决于分子运动的性质。

由于分子运动是无规则的,局部涨落磁场也是一个随机过程。

此外,弛豫速率(即弛豫时间的倒数),具有可加和性。

当存在多种弛豫机制时,总的弛豫速率是各种机制弛豫速率的总和。

①自旋-晶格弛豫时间(纵向弛豫时间)T1,核系统与周围晶格相互作用,交换能量,使核系统恢复平衡,这一过程被称为自旋-晶格弛豫过程,自旋-晶格弛豫过程的快慢可用自旋-晶格弛豫时间T1来表征。

T1的单位是秒。

②自旋-自旋弛豫时间(横向弛豫时间)T2,等同核之间的磁相作用被称为自旋-自旋相互作用。

等同核之间相互交换自旋态并不改变系统的总能量,却缩短了系统在激发态的能级寿命。

自旋-自旋弛豫时间T2是核处于激发态的能级寿命,以秒为单位,它与谱线宽度有关。

核磁共振成像仪MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。

MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。

它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。

MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

MRI也存在不足之处。

它的空间分辨率不及CT,带有心脏起搏器的患者或有某些金属异物的部位不能作MRI的检查,另外价格比较昂贵。

核磁共振成像仪技术成就保罗·劳特布尔(Paul Lauterbur),美国科学家。

他致力于核磁共振光谱学及其应用的研究。

劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。

1985年至今,他担任美国伊利诺伊大学生物医学核磁共振实验室主任。

因在核磁共振成像技术领域的突破性成就,而和英国科学家彼得·曼斯菲尔德(Peter Mansfield)共同获得2003年度诺贝尔生理学或医学奖。

于2007年3月27日在美国伊利诺伊州乌尔班纳市逝世,享年77岁。

劳特布尔1929年生于美国俄亥俄州小城悉尼,1951年获凯斯理工学院理学士,1962年获费城匹兹堡大学化学博士。

1963年至1984年间,劳特布尔作为化学和放射学系教授执教于纽约州立大学石溪分校。

在此期间,他致力于核磁共振光谱学及其应用的研究。

劳特布尔还把核磁共振成像技术推广应用到生物化学和生物物理学领域。

彼得·曼斯菲尔德1933年出生于英国伦敦,1959年获伦敦大学玛丽女王学院理学士,1962年获伦敦大学物理学博士学位。

1962年到1964年担任美国伊利诺伊大学物理系助理研究员,1964年到英国诺丁汉大学物理系担任讲师,现为该大学物理系教授。

除物理学之外,曼斯菲尔德还对语言学、阅读和飞行感兴趣,并拥有飞机和直升机两用的飞行员执照。

他进一步发展了有关在稳定磁场中使用附加的梯度磁场的理论,为核磁共振成像技术从理论到应用奠定了基础。

瑞典卡罗林斯卡医学院6日宣布,2003年诺贝尔生理学或医学奖授予美国科学家保罗·劳特布尔和英国科学家彼得·曼斯菲尔德,以表彰他们在核磁共振成像技术领域的突破性成就。

相关主题