当前位置:文档之家› 核辐射测量原理 (6)

核辐射测量原理 (6)

(1) 多数载流子扩 散,空间电荷形成内 电场并形成结区。结 区内存在着势垒,结 区又称为势垒区。势 垒区内为耗尽层,无
载流子存在,实现高 电阻率,达 1010 c,m
远高于本征电阻率。 9
(2) P-N结的漏电流
If - 能量较高的多子穿透 内电场,方向为逆内电场
方向;
P
IG- 在结区内由于热运动产 生的电子空穴对;
23
(2) 探测器和电子学噪声
探测器的噪声由P-N结反向电流及表面漏电 流的涨落造成; 电子学噪声主要由第一级FET 构成,包括:零电容噪声和噪声斜率。
噪声的表示方法:等效噪声电荷ENC,即放 大器输出端的噪声的均方根值等效于放大器输 入端的噪声电荷,以电子电荷为单位;由于噪 声叠加在射线产生的信号上,使谱线进一步加 宽,参照产生信号的射线的能量,用FWHM表 示,其单位就是KeV。例如,ENC=200电子对, 由噪声引起的线宽为:
则:
E 4.51KeV
25
2) 分辨时间与时间分辨本领:
109 ~ 108 s
3) 辐照损伤 辐照损伤是半导体探测器的一个致命
的弱点。半导体探测器随着使用时间的 增加,造成载流子寿命变短,影响载流 子的收集。例如,对5.5MeV的粒子, 当达到109cm-2时,分辨率开始变坏,达 到1011cm-2时明显变坏。
结区越宽。
E
-
+
If P
N
IG , IS
11
在外加反向电压时的反向电流:
少子的扩散电流,结区面积不变,IS 不变; 结区体积加大,热运动产生电子空穴多,IG 增大; 反向电压产生漏电流 IL ,主要是表面漏电流。
即:在使结区变宽的同时,IG 增加, IS不变,If减 小,并出现IL,此时表现的宏观电流称为暗电流。
2) 工作条件
为了降低探测器本身的噪声和FET的噪声,同 时为降低探测器的表面漏电流,锂漂移探测器和 场效应管FET都置于真空低温的容器内,工作于 液氮温度(77K)。
对Ge(Li)探测器,由于锂在锗中的迁移率较高, 须保持在低温下,以防止Li+Ga-离子对离解,使 Li+沉积而破坏原来的补偿; 对Si(Li)探测器,由 于锂在硅中的迁移率较低,在常温下保存而无永 久性的损伤。
形成P-N结。
工艺成熟、简单、价廉。 对光灵敏,探测带电粒子时探测器必须在 真空密封条件下;窗薄,不能用手摸镀金面。
20
2) 扩散结(Diffused Junction)型探测器
采用扩散工艺——高温扩散或离子注入; 材料一般选用P型高阻硅;在电极引出时一 定要保证为欧姆接触,以防止形成另外的 结。 室温下测β射线和X射线。
22
能量分辨率可用FWHM表示:
FWHM E E 2.36 F w E
FWHM 或 E 称为半高宽或线宽,单 位为:KeV。
以210Po的 E=5.305MeV 的粒子为例, 对一种PN结探测器,由于输出脉冲幅度 的统计涨落引起的线宽为:
E1 2.36 F w E 4.08KeV
S
eN D
2V0
2
即: Cd
1 1 V0 d
结区电容随外加电压变化而变化,外加
电压的不稳定可以影响探测器输出电压幅度
的不稳定。
19
6.2.2、P-N结半导体探测器的类型 1) 金硅面垒(Surface Barrier)探测器
一般用N型高阻硅作基片,表面蒸金50~
100g/cm2 (10m左右)氧化形成P型硅,而
30
3) 由于PIN探测器能量分辨率的大大提高, 开创了谱学的新阶段。 Li漂移探测器的问题:低温下保存代价很 高;漂移的生产周期很长,约30~60天。
31
6.4 高纯锗(HPGe)半导体探测器
由耗尽层厚度的公式:
1/ 2
d
=
2εV0 eN i
V0
降低杂质的浓度Ni可提高耗尽层的厚度。
高纯锗半导体探测器是由极高纯度的Ge单晶
制成的 P-N结 半导体探测器。杂质浓度为~1010
原子/cm3。
一般半导体材料杂质浓度为~1015原子/cm3。
32
6.4.1. 高纯锗探测器的工作原理 1) P-N结的构成(N+-P- P+)
采用高纯度的 P型Ge单晶,一端表 面通过蒸发扩散或加速器离子注入施主 杂质(如磷或锂)形成 N区 和 N+,并形成 P-N结。另一端蒸金属形成 P+。两端引 出电极。
Li+漂移速度
dd ' = μ(T)E
dt
当温度T 增大时,(T)增大,Li+漂移
速度增大。
28
2) P-I-N结的形成
基体用P型半导体(因为极高纯度的材料多是P型的),例如掺硼 的Si或Ge单晶。 (1) 一端表面蒸Li,Li离子化为Li+,形成PN结。 (2) 另一端表面蒸金属,引出电极。
外加电场,使Li+漂移。Li+与受主杂质(如Ga-)中和,并可实现 自动补偿形成 I 区。
N Da N Ab
当ND>>NA时,b>>a。则 d b
当NA>>ND时,a>>b。则 d a
一般可写成:
d
=
2εV0 eN i
1/
2
V0
Ni为掺杂少的一边的杂质浓度。 16
(3) 结区宽度的限制因素
1/ 2
d
=
2εV0 eN i
V0
受材料的击穿电压的限制:d V0 受暗电流的限制,因为: IG d


则势垒高度V0:
V0
-a
-
b
=
eN A 2ε
b2
+
eN D 2ε
a2
又因:N Da N Ab
所以: (a + b)b = 2εV0 eN A
(a + b)a = 2εV0 eN D
15
(a + b)b = 2εV0 eN A
(a + b)a = 2εV0 eN D
耗尽区的总宽度:d = a + b
2
半导体探测器的特点:
(1) 能量分辨率最佳; (2) 射线探测效率较高,可与闪烁探测器 相比。
常用半导体探测器有:
(1) P-N结型半导体探测器; (2) 锂漂移型半导体探测器; (3) 高纯锗半导体探测器;
3
6.1 半导体的基本性质
常用半导体材料为硅(Si)和锗(Ge),均为IV族元素.
6.1.1、本征半导体和杂质半导体 1) 本征半导体: 理想、无杂质的半导体.
电位分布可由电场积分得到:E (d / dx)
(x) = - eND (x + a)2 + -a

(x) = eNA (x - b)2 + b

-a x 0 0 < x b
14
(2) 结区宽度与外加电压的关系
当x = 0时,P区和N区的电位应相等,即
-a - eND a2 = eN A b2 + b
E
-
+
If P
N
IG , IS
12
2) P-N结半导体探测器的特点
(1) 结区的空间电荷分布,电场分布及电位分布
P-N结内N区和P区的电荷密度分别为:
(
x)
eeNNDA
(a x 0) (0 x b)
n-type
p-type
N
P
+++++ +++++ +++++
-------------------------------
21
6.2.4、主要性能 1) 能量分辨率
主要用于测量重带电粒子的能谱,如,p等, 一般要求耗尽层厚度大于入射粒子的射程。
影响能量分辨率的因素为:
(1) 输出脉冲幅度的统计涨落
E E
2.36v N
2.36
Fw E
式中:F为法诺因子,对Si,F=0.143;对 Ge,F=0.129。w为产生一个电子—空穴对所 需要的平均能量。
因为杂质浓度极低,相应的电阻率很 高。空间电荷密度很小,P区的耗尽层厚 度大。
33
6.5.3. 性能
1) 能量分辨率: E E12 E22 E32
其中: E1 2.36 F E 为载流子数的涨落。 E2 2.36(ENC ) 为漏电流和噪声;
由于热运动而产生的载流子浓度称为本征载流子浓 度,且导带中的电子数和价带中的空穴数严格相等。
固体物理理论已证明半导体内的载流子平衡
浓度为: ni pi 1019 e EG / 2kT
ni和pi为单位体积中的电子和空穴的数目,
下标“i”表示本征(Intrinsic)材料。T为材料的
绝对温度,EG为能级的禁带宽度。
26
P-N结半导体探测器存在的矛盾: 由于一般半导体材料的杂质浓度和外
加高压的限制,耗尽层厚度为1~2mm。 对强穿透能力的辐射而言,探测效率受很 大的局限。
27
6.3 锂漂移半导体探测器
6.3.1. 锂的漂移特性及P-I-N结 1) 间隙型杂质——Li
Li为施主杂质,电离能很小 ~0.033eV
E2 (FWHM )2 2.36 (ENC ) w 1.64K24eV
(3) 窗厚度的影响
d
d0
E3 (FWHM )3 (d d0 )
式中 为单位窗厚度引起的能量损失。
得到总线宽为:E
例如: E1 4.08KeV
E2 1.64KeV E3 1.0KeV
E12 E22 E32
相关主题