当前位置:文档之家› 数学建模多目标规划

数学建模多目标规划


虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
4 5 6 7 8 9
∗ ∗ ∗
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7 Z − 0.3W
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
0-1规划模型
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 先修课要求
约束条件 先修课程要求 x3=1必有x1 = x2 =1
∗ 1 ∗ 2 ∗ 3 ∗ ∗ ∗
4 5 6 7 8 9
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
决策变量 xi=1 ~选修课号i 的 课程(xi=0 ~不选) 目标函数 选修课程总数最少
Min
Z = ∑ xi
i =1
9
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
x1 + x 2 + x3 + x 4 + x5 ≥ 2
x3 + x5 + x6 + x8 + x9 ≥ 3
x4 + x6 + x7 + x9 ≥ 2
问该企业应如何安排生产,使得在计划期内 总利润最大?
1. 线性规划建模
该例是一个线性规划问题,直接考虑它的线性规划模型 设甲、乙产品的产量分别为x1,
x2,建立线性规划模型:
Max
z = 200 x 1 + 300 x 2 ;
s. t. 2x1 + 2x2 ≤ 12 , 4x1 ≤ 16, 5x2 ≤ 15, x1, x2 ≥ 0.
• 以课程最少为目标, 不管学分多少。 • 以学分最多为目标, 不管课程多少。
Min {Z , − W }
最优解如上,6门课 程,总学分21 。 最优解显然是选修所 有9门课程 。
多目标优化的处理方法:化成单目标优化。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3
化法二
min {ρ Q( X ) − (1 − ρ ) R( X )} s .t . F ( X ) = M X ≥O
ρ 为目标权重或偏好系数。
a ,b, ρ 均可看成参数,对不同的参数值求出 最优解,然后加以讨论,选出满意解。
例 选课策略
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 学分 5 4 4 3 4 3 2 2 3 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机 先修课要求
目标规划的数学模型
目标规划的基本概念
为了克服线性规划的局限性,目标规划采用如下手段: 1. 设置偏差变量; 2. 统一处理目标与约束; 3. 目标的优先级与权系数。
1. 设置偏差变量
用偏差变量(Deviational variables)来表示实际值与目标值 之间的差异,令 + ---- 超出目标的差值,称为正偏差变量 d d d − ---- 未达到目标的差值,称为负偏差变量 + − 其中d 与 d 至少有一个为0
求解算法 实例2:旅游路线设计
转化为单目标
今年暑假,我校要召开“××学术会议”,届时来自国内外 的许多著名学者都会相聚成都。在会议结束后,主办方希望能 安排这些远道而来的贵宾参观四川省境内的著名自然和人文景 观,初步设想有如下线路可供选择: 一号线:九寨沟、黄龙; 二号线:乐山、峨嵋; 三号线:四姑娘山、丹巴; 四号线:都江堰、青城山; 五号线:海螺沟、康定; 每条线路中的景点可以全部参观,也可以参观其中之一。 不仅如此,一起参观景点的人数越多,每人承担的费用也会越 小。车费与车型、乘客人数、路程种类及公里数有关。
矛 盾 的
一般形式: min Q( X ) max R( X ) s .t . F ( X ) = M X ≥O 双目标规划模型
化成单目标规划模型 化法一
min Q( X ) s .t . R ( X ) ≥ a F(X ) = M X ≥O

max R( X ) s .t . Q ( X ) ≤ b F(X ) = M X ≥O
x8 − x5 ≤ 0
2 x9 − x1 − x 2 ≤ 0
讨论:选修课程最少,学分尽量多,应学习哪些课程? 课程最少 学分最多
9
Min
Z = ∑ xi
i =1
Max W = 5x1 + 4x2 + 4x3 + 3x4 + 4x5 + 3x6 + 2x7 + 2x8 + 3x9
两目标(多目标)规划
求解算法 转化为单目标 实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用 作一个时期的投资。公司财务分析人员对这n种资产进行了 评估,估算出在这一时期内购买Si的平均收益率,并预测出 购买Si的风险损失率。考虑到投资越分散,总的风险越小, 公司确定,当用这笔资金购买若干种资产时,总体风险可用 所投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
Z = ∑ xi
i =1
9
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
W = 5x1 + 4x2 + 4x3 + 3x4 + 4x5 + 3x6 + 2x7 + 2x8 + 3x9
最优解: x1 = x2 = x3 = x4 = x5 = x6 = x7 = x9 =1, 其它为0;总学分28。
求解算法之一:
转化为单目标
用Lindo或Lingo软件求解,得到最优 解 *
x1 = 3, x2 = 3, z = 1500.
Max
பைடு நூலகம்
z = 200 x 1 + 300 x 2 ;
2. 目标规划建模
若在上例中,企业的经营目标不仅要考
s. t. 2 x1 + 2 x2 ≤ 12 ,
4 x1 ≤ 16, 5 x2 ≤ 15, x1 , x2 ≥ 0.
求解算法之二:
目标规划法
二、多目标优化目标规划法
线性规划通常考虑一个目标函数(问题简单) 目标规划考虑多个目标函数(问题复杂) 。
例 生产安排问题
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的盈利与使用设备的工时及限 制如下表所示。
甲 2 A/(h/件) 4 B/(h/件) 0 C/(h/件) 赢利/(元/件) 200 乙 设备的生产能力/h 2 12 0 16 5 15 300
线性多目标规划模型---线性加权和法
品 产
例: 一个生产问题,有关数 据如表。问如何安排生产可 使总利润最大,产量之和最 小。要求第二种原料用完。
4 4 B 1 C 单位利润 80
单耗 原料

乙 总量
5 2 0 100
80 48 6
A
解 设 x1 , x2 为甲,乙的产量 min z1 = x1 + x2 则 max z2 = 80 x1 + 100 x2 s .t . 4 x1 + 5 x2 ≤ 80 4 x1 + 2 x2 = 48 x1 ≤6 x1 , x2 ≥ 0
增加约束

9
i =1
xi = 6,
以学分最多为目标求解。 最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。 注意:最优解不唯一! 可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
∗1 ∗ ∗2 ∗ ∗3 ∗ ∗ ∗ ∗
微积分;线性代数 计算机编程 微积分;线性代数 计算机编程 应用统计 微积分;线性代数
要求至少选两门数学课、三门运筹学课和两门计算机课 为了选修课程门数最少,应学习哪些课程 ? 选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
课号 1 2 3 4 5 6 7 8 9 课名 微积分 线性代数 最优化方法 数据结构 应用统计 计算机模拟 计算机编程 预测理论 数学实验 所属类别 数学 数学 数学;运筹学 数学;计算机 数学;运筹学 计算机;运筹学 计算机 运筹学 运筹学;计算机
相关主题