当前位置:文档之家› 2.3直线、平面垂直的判定及其性质题型归纳

2.3直线、平面垂直的判定及其性质题型归纳

2.3直线、平面垂直的判定及其性质题型全归纳与垂直相关的几个重要结论1.直线与平面垂直的定义常常逆用,即a ⊥α,b ⊂α⇒a ⊥b . 2.若两平行直线中一条垂直于平面,则另一条也垂直于该平面. 3.垂直于同一条直线的两个平面平行. 4.过一点有且只有一条直线与已知平面垂直. 5.过一点有且只有一个平面与已知直线垂直.垂直关系的转化1.线面垂直证明的核心证明线面垂直的核心是证明线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.2.线线垂直的隐含条件证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)直角梯形等等.3.利用面面垂直的判定定理,其关键是寻找平面的垂线. (1)若这样的直线在图中存在,则可通过线面垂直来证明面面垂直.(2)若这样的直线不存在,则可通过作辅助线来解决,而作辅助线则应有理论根据并有利于证明,不能随意添加.注意:证明两个平面垂直,通常是通过证明线线垂直→线面垂直→面面垂直来实现的.4.三种垂直关系的证明方法 (1)证明线面垂直的方法①线面垂直的定义:a 与α内任何直线都垂直⇒a ⊥α; ②判定定理1:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n ⇒l ⊥α; ③判定定理2:a ∥b ,a ⊥α⇒b ⊥α; ④面面平行的性质:α∥β,a ⊥α⇒a ⊥β;⑤面面垂直的性质:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. (2)证明线线垂直的方法①定义:两条直线所成的角为90°; ②平面几何中证明线线垂直的方法; ③线面垂直的性质:a ⊥α,b ⊂α⇒a ⊥b ; ④线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . (3)证明面面垂直的方法①利用定义:两个平面相交,所成的二面角是直二面角; ②判定定理:a ⊂α,a ⊥β⇒α⊥β.题型一、直线与平面垂直的判定与性质1.(2012·湖南高考)如图所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD . 证明:BD ⊥PC ;2.(2014·福建高考)如图所示,三棱锥 A -BCD 中,AB ⊥平面BCD ,CD ⊥BD . (1)求证:CD ⊥平面ABD ;(2)若AB =BD =CD =1,M 为AD 中点,求三棱锥A -MBC 的体积.3.如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高.(1)证明:PH ⊥平面ABCD ;(2)证明:EF ⊥平面P AB .题型二、平面与平面垂直的判定与性质4.如图所示,△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点. 求证:(1)平面BDM⊥平面ECA;(2)平面DEA⊥平面ECA.5.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.(1)若P A=PD,求证:平面PQB⊥平面P AD;(2)点M在线段PC上,PM=tPC,试确定实数t的值,使P A∥平面MQB.6.已知三棱柱ABC-A′B′C′中,平面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(1)求证:BB′⊥底面ABC;(2)在棱A′B′上找一点M,使得C′M∥平面BEF,并给出证明.如图所示,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD =AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.(1)求证:平面ADF⊥平面CBF;(2)求证:PM∥平面AFC;(3)求多面体CD-AFEB的体积V.1.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,AD=2AB,SA=SD,SA⊥AB,N是棱AD的中点.(1)求证:AB∥平面SCD;(2)求证:SN⊥平面ABCD;2.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E 和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.3.如图所示,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A=6,BC=8,DF=5. 求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.4.如图所示,在长方形ABCD中,AB=2,BC=1,E为CD的中点,F为AE的中点.现在沿AE将三角形ADE向上折起,在折起的图形中解答下列问题:(1)在线段AB上是否存在一点K,使BC∥平面DFK?若存在,请证明你的结论;若不存在,请说明理由;(2)若平面ADE⊥平面ABCE,求证:平面BDE⊥平面ADE.1.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的正方形,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3,G 和H 分别是CE 和CF 的中点.(1)求证:AC ⊥平面BDEF ; (2)求证:平面BDGH ∥平面AEF .2.在如图的多面体中,AE ⊥底面BEFC ,AD ∥EF ∥BC ,BE =AD =EF =12BC ,G 是BC 的中点.求证:(1)AB ∥平面DEG ;(2)EG ⊥平面BDF .3.如图,已知P A ⊥平面ABCD ,且四边形ABCD 为矩形,M ,N 分别是AB ,PC 的中点. (1)求证:MN ⊥CD ;(2)若∠PDA =45°,求证:MN ⊥平面PCD .4.如图,在正三棱锥ABC -A 1B 1C 1中,E ,F 分别为BB 1,AC 的中点.(1)求证:BF ∥平面A 1EC ; (2)求证:平面A 1EC ⊥平面ACC 1A 1.5.(2012·新课标全国卷)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB =90°,AC =BC =12AA 1,D是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.直线、平面垂直的判定及其性质题型全归纳答案题型一、直线与平面垂直的判定与性质1.(2012·湖南高考) 【证明】(1)因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又AC ⊥BD ,P A ∩AC =A , 所以BD ⊥平面P AC .而PC ⊂平面P AC ,所以BD ⊥PC .2.(2014·福建高考)【证明】(1)证明:∵AB ⊥平面BCD ,CD ⊂平面BCD ,∴AB ⊥CD .又∵CD ⊥BD ,AB ∩BD =B ,AB ⊂平面ABD ,BD ⊂平面ABD , ∴CD ⊥平面ABD .(2)由AB ⊥平面BCD ,得AB ⊥BD ,∵AB =BD =1,∴S △ABD =12.∵M 是AD 的中点,∴S △ABM =12S △ABD =14.由(1)知,CD ⊥平面ABD , ∴三棱锥C -ABM 的高h =CD =1,因此三棱锥A -MBC 的体积V A -MBC =V C -ABM=13S △ABM ·h =112. 3.(1)由线面垂直的判定及性质证明PH ⊥平面ABCD ;(2)作出P A 的中点G ,证明DG ⊥平面P AB ,进而由EF 与DG 的关系证明EF ⊥平面P AB . 【证明】(1)由于AB ⊥平面P AD ,PH ⊂平面P AD ,故AB ⊥PH .又PH 为△P AD 中AD 边上的高,故AD ⊥PH . ∵AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴PH ⊥平面ABCD .(2)过E 作EG ∥AB 交P A 于点G ,连接DG . ∵E 为PB 的中点,∴G 为P A 的中点.∵AD =PD ,故△DP A 为等腰三角形,∴DG ⊥AP . ∵AB ⊥平面P AD ,DG ⊂平面P AD ,∴AB ⊥DG . 又∵AB ∩P A =A ,AB ⊂平面P AB ,P A ⊂平面P AB , ∴DG ⊥平面P AB .又∵GE ∥AB ,DF ∥AB ,且GE =12AB ,DF =12AB∴GE ∥DF ,且GE =DF .∴四边形DFEG 为平行四边形,故DG ∥EF . ∴EF ⊥平面P AB .题型二、平面与平面垂直的判定与性质4.【证明】(1)取CA 的中点N ,连结MN ,BN ,则MN ∥EC ,且MN =12EC.∴MN ∥BD ,∴点N 在平面BDM 内. ∵EC ⊥平面ABC ,∴EC ⊥BN . 又CA ⊥BN ,∴BN ⊥平面ECA . ∵BN ⊂平面BDM , ∴平面BDM ⊥平面ECA . (2)∵DM ∥BN ,BN ⊥平面ECA . ∴DM ⊥平面ECA . 又DM ⊂平面DEA , ∴平面DEA ⊥平面ECA .5.【证明】(1)连接BD ,因为四边形ABCD 为菱形,且∠BAD =60°,所以△ABD 为正三角形,又Q 为AD 的中点,所以AD ⊥BQ . 又因为P A =PD ,所以AD ⊥PQ . 又BQ ∩PQ =Q ,所以AD ⊥平面PQB , 又AD ⊂平面P AD ,所以平面PQB ⊥平面P AD .【解析】(2)若P A ∥平面MQB ,连接AC 交BQ 于N ,连接MN .由AQ ∥BC 可得,△ANQ ∽△CNB , 所以AQ BC =AN NC =12,因为P A ∥平面MQB ,P A ⊂平面P AC , 平面P AC ∩平面MQB =MN ,所以P A ∥MN , 因此,PM PC =AN AC =13,即t 的值为13.6. 【证明】(1)如图,取BC 中点O ,连接AO ,因为三角形ABC 是等边三角形,所以AO ⊥BC ,又平面BCC ′B ′⊥底面ABC ,AO ⊂平面ABC ,平面BCC ′B ′∩平面ABC =BC , 所以AO ⊥平面BCC ′B ′, 又BB ′⊂平面BCC ′B ′, 所以AO ⊥BB ′.又BB ′⊥AC ,AO ∩AC =A ,AO ⊂平面ABC ,AC ⊂平面ABC , 所以BB ′⊥底面ABC .(2)如图,显然M不是A′,B′;棱A′B′上若存在一点M,使得C′M∥平面BEF,过M作MN∥AA′交BE于N,连接FN,MC′,所以MN∥C′F,即C′M和FN共面,所以C′M∥FN,所以四边形C′MNF为平行四边形,所以MN=2,所以MN是梯形A′B′BE的中位线,M为A′B′的中点.【解】(1)∵矩形ABCD所在的平面和平面ABEF互相垂直,且CB⊥AB,∴CB⊥平面ABEF,又AF⊂平面ABEF,所以CB⊥AF,又AB=2,AF=1,∠BAF=60°,由余弦定理知BF=3,∴AF2+BF2=AB2,得AF⊥BF,又BF∩CB=B,∴AF⊥平面CFB,又∵AF⊂平面ADF;∴平面ADF⊥平面CBF.(2)连接OM延长交BF于H,则H为BF的中点,又P为CB的中点,∴PH∥CF,又∵CF⊂平面AFC,PH⊄平面AFC,∴PH∥平面AFC,连接PO,则PO∥AC,又∵AC⊂平面AFC,PO⊄平面AFC,PO∥平面AFC,PO∩PH=P,∴平面POH∥平面AFC,又∵PM⊂平面POH,∴PM∥平面AFC.(3)【解】多面体CD-AFEB的体积可分成三棱锥C-BEF与四棱锥F-ABCD的体积之和.在等腰梯形ABEF中,计算得EF=1,两底间的距离EE1=3 2.所以V C-BEF=13S△BEF×CB=13×12×1×32×1=312,V F-ABCD=13S矩形ABCD×EE1=13×2×1×32=33,所以V=V C-BEF+V F-ABCD=53 12.1.【证明】(1)因为底面ABCD是矩形,所以AB∥CD,又因为AB⊄平面SCD,CD⊂平面SCD,所以AB ∥平面SCD .(2)因为AB ⊥SA ,AB ⊥AD ,SA ∩AD =A , 所以AB ⊥平面SAD ,又因为SN ⊂平面SAD , 所以AB ⊥SN .因为SA =SD ,且N 为AD 中点, 所以SN ⊥AD . 又因为AB ∩AD =A ,所以SN ⊥平面ABCD .2.【证明】(1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点, 所以AB ∥DE ,且AB =DE . 所以四边形ABED 为平行四边形. 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形, 所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD . 所以P A ⊥CD . 所以CD ⊥平面P AD . 从而CD ⊥PD .又E ,F 分别是CD 和PC 的中点, 所以PD ∥EF .故CD ⊥EF ,CD ⊂平面PCD ,由EF ,BE ⊂平面BEF ,且EF ∩BE =E . 所以CD ⊥平面BEF . 所以平面BEF ⊥平面PCD .3.【证明】(1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥P A .又因为P A ⊄平面DEF ,DE ⊂平面DEF , 所以直线P A ∥平面DEF .(2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,P A =6,BC =8, 所以DE ∥P A ,DE =12P A =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2, 所以∠DEF =90°,即DE ⊥EF . 又P A ⊥AC ,DE ∥P A ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC . 又DE ⊂平面BDE , 所以平面BDE ⊥平面ABC .4.【解析】(1)线段AB 上存在一点K, 且当AK =14AB 时,BC ∥平面DFK ,证明如下:设H 为AB 的中点,连接EH ,DK ,KF ,则BC ∥EH , 又∵AK =14AB ,F 为AE 的中点,∴KF ∥EH ,∴KF ∥BC ,∵KF ⊂平面DFK ,BC ⊄平面DFK , ∴BC ∥平面DFK .【证明】(2)∵在折起前的图形中E 为CD 的中点,AB =2,BC =1,∴在折起后的图形中,AE =BE =2, 从而AE 2+BE 2=4=AB 2, ∴AE ⊥BE .∵平面ADE ⊥平面ABCE ,平面ADE ∩平面ABCE =AE , ∴BE ⊥平面ADE ,∵BE ⊂平面BDE ,∴平面BDE ⊥平面ADE .1.【证明】(1)因为四边形ABCD 是正方形,所以AC ⊥BD .又因为平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,且AC ⊂平面ABCD , 所以AC ⊥平面BDEF .(2)在△CEF 中,因为G ,H 分别是CE ,CF 的中点,所以GH ∥EF , 又因为GH ⊄平面AEF ,EF ⊂平面AEF ,所以GH ∥平面AEF . 设AC ∩BD =O ,连接OH ,在△ACF 中,因为OA =OC ,CH =HF , 所以OH ∥AF ,又因为OH ⊄平面AEF ,AF ⊂平面AEF , 所以OH ∥平面AEF .又因为OH ∩GH =H ,OH ,GH ⊂平面BDGH , 所以平面BDGH ∥平面AEF .2.【证明】(1)∵AD ∥EF ,EF ∥BC ,∴AD ∥BC .又∵BC =2AD ,G 是BC 的中点,∴AD ∥BG ,且AD =BG ,∴四边形ADGB 是平行四边形,∴AB ∥DG .∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴AB ∥平面DEG .(2)连接GF ,四边形ADFE 是矩形,∵DF ∥AE ,AE ⊥底面BEFC ,∴DF ⊥平面BCFE ,EG ⊂平面BCFE ,∴DF ⊥EG .∵EF ∥BG ,且EF ∥BG ,EF =BE ,∴四边形BGFE 为菱形,∴BF ⊥EG ,又BF ∩DF =F ,BF ⊂平面BFD ,DF ⊂平面BFD ,∴EG ⊥平面BDF .3.【证明】(1)如图所示,取PD 的中点E ,连接AE ,NE ,∵N 是PC 的中点,E 为PD 的中点,∴NE ∥CD ,且NE =12CD ,而AM ∥CD ,且AM =12AB =12CD ,∴NE ∥AM ,且NE =AM ,∴四边形AMNE 为平行四边形,∴MN ∥AE .又P A ⊥平面ABCD ,∴P A ⊥CD ,又∵ABCD 为矩形,∴AD ⊥CD .而AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥AE .又AE ∥MN ,∴MN ⊥CD .(2)∵P A ⊥平面ABCD ,∴P A ⊥AD ,又∠PDA =45°,∴△P AD 为等腰直角三角形.又E 为PD 的中点,∴AE ⊥PD ,又由(1)知CD ⊥AE ,PD ∩CD =D ,∴AE ⊥平面PCD .又AE ∥MN ,∴MN ⊥平面PCD .4.【证明】(1)连接AC 1交A 1C 于点O ,连接OE ,OF ,在正三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1为平行四边形,所以OA =OC 1.又因为F 为AC 中点,所以OF ∥CC 1且OF =12CC 1. 因为E 为BB 1中点,所以BE ∥CC 1且BE =12CC 1. 所以BE ∥OF 且BE =OF ,所以四边形BEOF 是平行四边形,所以BF ∥OE . 又BF ⊄平面A1EC ,OE ⊂平面A 1EC ,所以BF ∥平面A 1EC .(2)由(1)知BF ∥OE ,因为AB =CB ,F 为AC 中点,所以BF ⊥AC ,所以OE ⊥AC .又因为AA 1⊥底面ABC ,而BF ⊂底面ABC ,所以AA 1⊥BF .由BF ∥OE ,得OE ⊥AA 1,而AA 1,AC ⊂平面ACC 1A 1,且AA 1∩AC =A , 所以OE ⊥平面ACC 1A 1.因为OE ⊂平面A 1EC ,所以平面A 1EC ⊥平面ACC 1A 1.5.(2012·新课标全国卷)【证明】(1)由题设知BC ⊥CC 1,BC ⊥AC ,CC 1∩AC =C ,所以BC ⊥平面ACC 1A 1.又DC 1⊂平面ACC 1A 1,所以DC 1⊥BC .由题设知∠A 1DC 1=∠ADC =45°,所以∠CDC 1=90°,即DC 1⊥DC . 又DC ∩BC =C ,所以DC 1⊥平面BDC .又DC 1⊂平面BDC 1,故平面BDC 1⊥平面BDC .(2)设棱锥B -DACC 1的体积为V 1,AC =1.由题意得V 1=13×1+22×1×1=12. 又三棱柱ABC -A 1B 1C 1的体积V =1,所以(V -V 1)∶V 1=1∶1.故平面BDC 1分此棱柱所得两部分体积的比为1∶1.。

相关主题