当前位置:文档之家› 高考物理动能与动能定理专题训练答案

高考物理动能与动能定理专题训练答案

高考物理动能与动能定理专题训练答案一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

2.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥3.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R=12gt2解得:x=0.8m则小物块离开D点后落到地面上的点与D点之间的距离20.82ml x==4.如图所示,在倾角为θ=30°的固定斜面上固定一块与斜面垂直的光滑挡板,质量为m的半圆柱体A紧靠挡板放在斜面上,质量为2m的圆柱体B放在A上并靠在挡板上静止。

A 与B半径均为R,曲面均光滑,半圆柱体A底面与斜面间的动摩擦因数为μ.现用平行斜面向上的力拉A,使A沿斜面向上缓慢移动,直至B恰好要降到斜面.设最大静摩擦力等于滑动摩擦力,重力加速度为g。

求:(1)未拉A时,B受到A的作用力F大小;(2)在A移动的整个过程中,拉力做的功W;(3)要保持A缓慢移动中拉力方向不变,动摩擦因数的最小值μmin.【答案】(1)F 3(2)1(93)2W mgRμ=-(3)min53μ=【解析】【详解】(1)研究B,据平衡条件,有F =2mg cosθ解得F 3mg (2)研究整体,据平衡条件,斜面对A的支持力为N =3mg cosθ =332mgf =μN33由几何关系得A的位移为x =2R cos30°3R 克服摩擦力做功Wf =fx =4.5μmgR 由几何关系得A上升高度与B下降高度恰均为h3据功能关系W + 2mgh - mgh - Wf = 0解得1(93)2W mgR μ=-(3)B 刚好接触斜面时,挡板对B 弹力最大 研究B 得24sin 30mmgN mg '==︒研究整体得f min + 3mg sin30° = N′m解得f min = 2.5mg可得最小的动摩擦因数:min min 539f N μ==5.如图所示,一根轻弹簧左端固定于竖直墙上,右端被质量1m kg =可视为质点的小物块压缩而处于静止状态,且弹簧与物块不栓接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带, AB 长5L m =,物块与传送带间的动摩擦因数10.2μ=,与传送带相邻的粗糙水平面BC 长s=1.5m ,它与物块间的动摩擦因数20.3μ=,在C 点右侧有一半径为R 的光滑竖直圆弧与BC 平滑连接,圆弧对应的圆心角为120θ=o ,在圆弧的最高点F 处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以5/v m s =的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的18p E J =能量全部释放时,小物块恰能滑到与圆心等高的E 点,取210/g m s =.(1) 求右侧圆弧的轨道半径为R; (2) 求小物块最终停下时与C 点的距离;(3) 若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.【答案】(1)0.8R m =;(2)13x m =;(337/43/m s v m s ≤≤ 【解析】 【分析】 【详解】(1)物块被弹簧弹出,由2012p m v E =,可知:06/m s v = 因为0v v>,故物块滑上传送带后先减速物块与传送带相对滑动过程中,由:11mg maμ=,011v v a t =-,21011112x v t a t =-得到:12/2m s a =,10.5s t =,1 2.75m x = 因为1L x<,故物块与传送带同速后相对静止,最后物块以5/m s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:2212m mgs mgR v μ=+ 代入数据整理可以得到:0.8R m =. (2)设物块从E 点返回至B 点的速度为B v ,由22211222B m m mg s v v μ-=⨯ 得到7/Bm s v=,因为0B v >,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性可知其以相同的速率离开传送带,设最终停在距C 点x 处,由()2212B mv mg s x μ=-,得到:13x m =. (3)设传送带速度为1v 时物块能恰到F 点,在F 点满足2sin30F mg m Rv =o从B 到F 过程中由动能定理可知:()221211sin 3022F mv mv mgs mg R R μ-=++o 解得:设传送带速度为2v 时,物块撞挡板后返回能再次上滑恰到E 点, 由:222132m mg s mgR v μ=⨯+ 解得:243/m s v=若物块在传送带上一直加速运动,由22011122Bm m m mgL v v μ-= 知其到B 点的最大速度56/Bmm s v=37/43/m s v m s ≤≤就满足条件.【点睛】本题主要考查了牛顿第二定律、动能定理、圆周运动向心力公式的直接应用,此题难度较大,牵涉的运动模型较多,物体情境复杂,关键是按照运动的过程逐步分析求解.6.如图所示,水平传送带长为L =4m ,以02m /s v =的速度逆时针转动。

一个质量为lkg的物块从传送带左侧水平向右滑上传送带,一段时间后它滑离传送带。

已知二者之间的动摩擦因数0.2μ=,g =10m/s 2。

(1)要使物块能从传送带右侧滑离,则物块的初速度至少多大?(2)若物块的初速度为3m /s v '=,则物块在传送带上运动时因摩擦产生的热量为多少? 【答案】(1)4m /s v >;(2)12.5J 【解析】 【详解】(1)设物块初速度为v ,物块能从传送带右侧滑离,对其分析得:212k mgL E mv μ-=-0k E >解得:4m/s v >(2)物块在传送带上的运动是先向右减速运动,后向左加速运动。

物块向右减速运动时,有:1v t a '=21102mgx mv μ'-=-物块与传送带的相对滑动产生的热量:()1011Q mg v t x μ=+向左加速运动时,有:2v t a=22012mgx mv μ=物块与传送带的相对滑动产生的热量:()2022Q mg v t x μ=-1212.5J Q Q Q '=+=7.如图所示,AB 是光滑的水平轨道,B 端与半径为l 的光滑半圆轨道BCD 相切,半圆的直径BD 竖直,将弹簧水平放置,一端固定在A 点.现使质量为m 的小滑块从D 点以速度v 0=进入轨道DCB ,然后沿着BA 运动压缩弹簧,弹簧压缩最短时小滑块处于P 点,重力加速度大小为g ,求:(1)在D点时轨道对小滑块的作用力大小F N;(2)弹簧压缩到最短时的弹性势能E p;(3)若水平轨道AB粗糙,小滑块从P点静止释放,且PB=5l,要使得小滑块能沿着轨道BCD运动,且运动过程中不脱离轨道,求小滑块与AB间的动摩擦因数μ的范围.【答案】(1)(2)(3)μ≤0.2或0.5≤μ≤0.7【解析】(1)解得(2)根据机械能守恒解得(3)小滑块恰能能运动到B点解得μ=0.7小滑块恰能沿着轨道运动到C点解得μ=0.5所以0.5≤μ≤0.7小滑块恰能沿着轨道运动D点解得μ=0.2所以μ≤0.2综上μ≤0.2或0.5≤μ≤0.78.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m .A 、B 用一根绝缘轻杆相连,A 带的电荷量为q=+7×10﹣7C ,B 不带电,质量分别为m A =0.01kg 、m B =0.08kg .将两小球从圆环上的图示位置(A 与圆心O 等高,B 在圆心O 的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s 2 .(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+-由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/3v m s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0 解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.如图所示,质量为m 1=1kg 的小物块P ,置于桌面上距桌面右边缘C 点L 1=90cm 的A 点并与弹簧的右端接触(不拴接),轻弹簧左端固定,且处于原长状态.质量为M =3.5kg 、长L =1.5m 的小车静置于光滑水平面上,其上表面与水平桌面相平,且紧靠桌子右端.小车左端放有一质量为m 2=0.5kg 的小滑块Q .现用水平向左的推力将P 缓慢压缩L 2=5cm 推至B 点(弹簧仍在弹性限度内)时,撤去推力,此后P 沿桌面滑到桌子边缘C 时速度为2m/s ,并与小车左端的滑块Q 相碰,最后Q 停在小车的右端,物块P 停在小车上距左端0.35m 处P 与桌面间动摩擦因数μ1=0.4,P 、Q 与小车表面间的动摩擦因数μ2=0.1,重力加速度g =10m/s 2 (1)小车最后的速度v ; (2)推力所做的功;(3)在滑块Q 与车相对静止时,Q 到桌边的距离.【答案】(1)0.4m/s ;(2)6J ;(3)1.92m . 【解析】 【详解】(1)设物块P 与滑块Q 碰后最终与小车保持相对静止,其共同速度为v 由动量守恒得:1c 12()m v m m M v =++代入数据可得:v =0.4m/s(2)90cm =0.9m ,设弹簧的最大弹性势能为E pm 根据动能定理得:211121c 1(2)2W m g L L m v μ-+=得:W =6J(3)设物块P 与滑块Q 碰后速度分别为v 1和v 2,P 与Q 在小车上滑行距离分别为S 1和S 2 P 与Q 碰撞前后动量守恒,则有:11122c m v m v m v =+由动能定理得:222211222112212111()222m gs m gs m v m v m m M v μμ+=+-++ 联立得v 1=1m/s ,v 2=2m/s方程的另一组解:当 v 2′=23m/s 时,v 1′=53m/s ,v 1′>v 2′不合题意舍去. 设滑块Q 与小车相对静止时到桌边的距离为s ,Q 在小车上运动的加速度为a由牛顿第二定律得:222m g m a μ-=代入数据解得:a =﹣1m/s 2由匀变速运动规律得:2222v v s a-= 解得:s =1.92m10.如图甲所示,一质量为m a 的滑块(可看成质点)固定在半径为R 的光滑四分之一圆弧轨道的顶端A 点,另一质量为m b 的滑块(可看成质点)静止在轨道的底端B 处,A 点和圆弧对应的圆心O 点等高。

相关主题