当前位置:文档之家› 基因调控网络(精)

基因调控网络(精)

9
解微分方程
₪ 一般采用四阶定步长Runge-Kutta算法计算解常 微分方程。该算法结构简单。求解方法如下: ₪ 首先定义四个附加变量: k1 = f(x(t),t) k2 = f(x(t)+hk1/2,t+h/2) k3 = f(x(t)+hk2/2,t+h/2) k4 = f(x(t)+hk3,t+h/2) 其中:h为计算步长,在实际应用中该步长是一 个常数,这样由四阶Runge-Kutta算法可以由当 前状态变量x(t)的值求解出下个状态变量x(t +1) 的值 x(t +1) = x(t) + h(k1 /6 + k2 /3 + k3 /3 + k4 /6)
4
₪ 例如, dt f ( x , x ,..., x )(i 1, 2,..., n) ,其中xi表示第i个基因的表达水 平,n表示基因调控网络中的基因数。所以主要的工作就 是对于右端任意的微分方程系统的演化。
i 1 2 n
dxi (t )
₪ 关于这方面的研究主要集中在两个方面: (1). 微分方程结构的优化; (2). 微分方程系数和常数的优化。 研究表明:微分方程演化的越准确,得到的生物网络模 型越精确,越接近目标网络模型 。
3
研究现状
₪ 当前对于基因调控网络研究的方法一般包括以下两个步 骤: 1. 模型选择 线性模型、布尔模型、贝叶斯网络模型、微分方程模 型、随机方程模型等 2. 模型构建或优化的算法 梯度下降法、支持向量机、贪心算法、遗传算法、遗 传编程等 近年来,微分方程模型逐渐成为系统生物学领域中的热 点。微分方程模型是以其它基因表达水平和外部环境的 因素组成的函数来描述基因表达的变化,可以充分模拟 基因调控网络的动态行为。相比较其他模型,微分方程 模型非常强大灵活,利于研究基因网络中的复杂关系。



选择一定数量的 个体参数优化
结束
8
分裂
₪ 采用分裂思想,可以大量的减少方程组得搜索空 间。假设一个微分方程组的方程最大表达式长度 为c,则假如有一个变量,则搜索空间为1c,若 有两个变量,则搜索空间为2c× 2c=22c。对于n个 变量的微分方程组,则搜索空间为nnc。若采用 分裂法,即每个微分方程分别优化,则搜索空间 变为nc+1,明显变小。 ₪ 单独优化每一个微分方程,在结构和系数编码、 优化上都与前面一样。只是在求每个染色体适应 值时,解微分方程需要做一下改动。
2
₪ 基因调控网络本质上是一个连续而复杂的动态系 统,即复杂的动力系统网络。建模时为了简化求 解的需要,往往对其进行简化。基因调控网络有 许多特性,如复杂性(即基因网络包含着不同层 次的错综复杂的物质、关系和功能结构,基因的 复杂性还体现在基因的组合性质方面)、稳定性 (基因网络系统能够通过自动调节达到稳定)、可 进化性和有限连通性等。
₪ 统计每个方程对应系数的个数和其对应的位置, 把方程组的系数组合成一个粒子,通过粒子群优 化算法(PSO),得到好的系数。
1: x1 2: x3 3: + 1,1 4: * 1,3 5: 1 6: - 2,5 P1 P3 P2
7
P4
P5
流程图
初始化种群 评价个体适应值 否
代数是否达到要求
是否达到要求 保留好的, k1 k2 k3 k4 x(t) 为n 维向量,函数组f = {f1, f2, …, fn}。 ₪ 由于采用分裂思想,每个方程单独优化。假设优 化第一个微分方程(下图为优化方程的训练数 据),
11
₪ 生成的种群只代表第一个微分方程,即函数组中只有f1 已知,只能计算出k1 k2 k3 k4 中的第一个元素的值,其他 元素的值未知。利用训练数据,在根据当前状态变量x(t) 的值求解出下个状态变量x(t +1)的值时, k1 k4 中的其他 元素可以分别取x(t), x(t +1)相应的值,但k2 k3的确定出 现了问题。 ₪ 对于这种情况,我们采用一种近似的处理方法。即在根 据当前状态变量x(t)的值求解出下个状态变量x(t +1)的值 时, k2 k3 向量中的其他元素一律采用xi = [x(t +1)+ x(t)]/2。由于采用这中近似四阶定步长Runge-Kutta算法, 不可避免有些误差,通过实验,用这种方法,在大幅度 提高减少搜索空间的同时,又对效果影响不大。 ₪ 但在研究过程中,发现如果采用线性插值的方法确定 k2 k3 向量中的其他元素,误差会小一些。即在确定k2中的
5
研究过程
₪ 基于多表达式程序设计(MEP)的一些优点,如线 性的染色体结构、实现简单、一个染色体包含多 个基因等,我们采用MEP优化微分方程的结构, 粒子群优化算法(PSO)优化方程中的系数和常数。 ₪ 例如,我们选取F = {+, -, *},T = {X1,...,Xn ,1}(1 表示常数)。对于含三个未知数的微分方程组
6
₪ 可表示一组染色体形式(E1,E6,E6):
dx1/dt 1: x1 2: x2 3: + 1,1 4: * 1,3 5: +1,2 6: - 2,5 dx2/dt 1: x1 2: x2 3: + 1,2 4: - 1,3 5: x3 6: + 3,5 dx3/dt 1: x1 2: x2 3: + 1,2 4: - 1,2 5: x3 6: + 3,5
基因调控网络
杨斌
2007 济南
1
背景
₪ 基因表达(gene expression)是指细胞在生命过程中, 把储存在DNA顺序中遗传信息经过转录和翻译,转 变成具有生物活性的蛋白质分子。生物体内的各种 功能蛋白质和酶都是同相应的结构基因编码的。 ₪ 一个基因的表达受其他基因的影响,而这个基因又 影响其他基因的表达,这种相互影响相互制约的关 系构成了复杂的基因表达调控网络。更一般些,几 乎所有的细胞活动都被基因网络所控制。对系统科 学的研究促使生物学家以系统的观点认识高度复杂 的生命现象。生命是存储并加工信息的复杂系统, 从而,孤立地研究单个基因及其表达往往不能确切 地反映生命现象本身的内在规律。因此,科学家们 开始从复杂系统的角度研究基因网络。
相关主题