当前位置:文档之家› 螺柱超声波探伤

螺柱超声波探伤

一. 超声波探伤仪检测方法
探头与紧固螺栓耦合的位置及超声束投射方向如附图所示。

螺栓的材料牌号为A3或者20#钢,长度规格包括:80、110、120、130、140、150、160mm等,直径规格包括:20、22、24、28、30、36mm等(随设备型号及吨位不同而有区别)。

[1] 探伤设备:
WT2007型超声探伤仪,2.5P14直探头。

耦合剂为黄油(液压缸下密封盖的紧固螺栓暴露端朝下,需采取仰探方式)和机油(液压缸上密封盖的紧固螺栓暴露端是浸没在缸外冷却油中的,可以直接把探头浸入油中与螺栓端面耦合,但是探头与探头电缆接连处要用胶带纸严密包裹,防止机油渗入影响电接触)。

[2] 探伤灵敏度的设定:
先在荷兰试块或CSK-ⅠA试块100mm高的平面上进行直射纵波1:2定标,使荧光屏水平线的满刻度为200mm。

然后将探头耦合在一支长度为150mm、直径20mm的同材料状态的完好螺栓端面的中心位置上,并稍作移动以找到最大底波,调整仪器灵敏度使该最大回波高度达到50%满屏高,再增益20dB作为探伤起始灵敏度。

(这种设定的指导思想主要有两个方面考虑,其一是由于超声波是在一个近似细长圆柱形的物体中传播,有波制导存在,因此只能是参照超声波在无限大介质中的传播规律,调整到大体相当于可发现75mm处的Φ2平底孔当量作为起始灵敏度;其二,对于这种埋桩螺栓,最常出现疲劳裂纹的位置是在中间光杆部分两端的螺纹接入处或者说是接近密封件的结合界面处,如附图所示。

因此只要能确定螺栓的底波以确认螺栓长度,并有足够的探测灵敏度即可,如果探测灵敏度太高的话则会因为螺纹段的杂乱回波太多太高而影响对裂纹回波的判定。

)
[3] 缺陷判断:
应该说,超声波原位探伤时的一个有利条件是螺栓正处在拉伸应力作用下(加载状态),因此如果存在疲劳裂纹时,裂纹的开隙度要比拆卸后(卸载)的状态大得多,这对超声波检测来说是非常有利的。

在实际探测中,有些螺栓的端面是不平整的,对于存在车削加工时留下的凸出物必须除掉(锉平或铲除)以保障耦合质量,而端面下凹时则可采用黄油填补耦合的方法(注意不要有空气隙存在),此外应该平稳地扶持探头以保持耦合稳定。

将探头平稳地耦合在螺栓端面上,应能正确地找到最大底波并根据该底波前沿在水平刻度线上的位置判定螺栓长度是否正确(因为如果螺栓已经严重断裂时,断裂处的回波将会几乎完全遮蔽底波,则显示出的螺栓长度显然是远远短于规定尺寸的)。

在始波与底波之间因为螺纹部分的沟槽存在而必然有杂草状回波出现,并且随探头在螺栓端面上做小范围移动时会显示幅度变化(与螺纹沟槽的光洁度、螺栓直径及侧壁效应有关)。

在检测中如果发现有明显高出周围杂波(信噪比大于2或者明显高出6dB)的单峰回波且其位置在密封件结合面附近处,则可认为是裂纹波,此时应记录该螺栓在设备上的位置(或者编号)并做好标记,通知设备维修人员将此螺栓更换。

三. 效果
采用原位超声波探伤可以免除整台设备大拆卸造成停产周期太长之弊,一旦探伤发现有某个或某些螺栓存在疲劳裂纹时只需要局部拆卸进行个别更换,不需要象以前那样全部拆卸下来并全部替换,这对于降低设备维修人员的劳动强度、缩短检修周期以及节约材料费用等都是非常有好处的。

自1996年起每年进行定期检测,按照我们目前采用的检测工艺与探伤灵敏度进行过检查的设备至今尚未出现因螺栓断裂而造成的设备故障。

一. 检测方法
探头与紧固螺栓耦合的位置及超声束投射方向如附图所示。

螺栓的材料牌号为A3或者20#钢,长度规格包括:80、110、120、130、140、150、160mm等,直径规格包括:20、22、
24、28、30、36mm等(随设备型号及吨位不同而有区别)。

[1] 探伤设备:
WT2007型超声探伤仪,2.5P14直探头。

耦合剂为黄油(液压缸下密封盖的紧固螺栓暴露端朝下,需采取仰探方式)和机油(液压缸上密封盖的紧固螺栓暴露端是浸没在缸外冷却油中的,可以直接把探头浸入油中与螺栓端面耦合,但是探头与探头电缆接连处要用胶带纸严密包裹,防止机油渗入影响电接触)。

[2] 探伤灵敏度的设定:
先在荷兰试块或CSK-ⅠA试块100mm高的平面上进行直射纵波1:2定标,使荧光屏水平线的满刻度为200mm。

然后将探头耦合在一支长度为150mm、直径20mm的同材料状态的完好螺栓端面的中心位置上,并稍作移动以找到最大底波,调整仪器灵敏度使该最大回波高度达到50%满屏高,再增益20dB作为探伤起始灵敏度。

(这种设定的指导思想主要有两个方面考虑,其一是由于超声波是在一个近似细长圆柱形的物体中传播,有波制导存在,因此只能是参照超声波在无限大介质中的传播规律,调整到大体相当于可发现75mm处的Φ2平底孔当量作为起始灵敏度;其二,对于这种埋桩螺栓,最常出现疲劳裂纹的位置是在中间光杆部分两端的螺纹接入处或者说是接近密封件的结合界面处,如附图所示。

因此只要能确定螺栓的底波以确认螺栓长度,并有足够的探测灵敏度即可,如果探测灵敏度太高的话则会因为螺纹段的杂乱回波太多太高而影响对裂纹回波的判定。

)
[3]缺陷判断:
应该说,超声波原位探伤时的一个有利条件是螺栓正处在拉伸应力作用下(加载状态),因此如果存在疲劳裂纹时,裂纹的开隙度要比拆卸后(卸载)的状态大得多,这对超声波检测来说是非常有利的。

在实际探测中,有些螺栓的端面是不平整的,对于存在车削加工时留下的凸出物必须除掉(锉平或铲除)以保障耦合质量,而端面下凹时则可采用黄油填补耦合的方法(注意不要有空气隙存在),此外应该平稳地扶持探头以保持耦合稳定。

将探头平稳地耦合在螺栓端面上,应能正确地找到最大底波并根据该底波前沿在水平刻度线上的位置判定螺栓长度是否正确(因为如果螺栓已经严重断裂时,断裂处的回波将会几乎完全遮蔽底波,则显示出的螺栓长度显然是远远短于规定尺寸的)。

在始波与底波之间因为螺纹部分的沟槽存在而必然有杂草状回波出现,并且随探头在螺栓端面上做小范围移动时会显示幅度变化(与螺纹沟槽的光洁度、螺栓直径及侧壁效应有关)。

在检测中如果发现有明显高出周围杂波(信噪比大于2或者明显高出6dB)的单峰回波且其位置在密封件结合面附近处,则可认为是裂纹波,此时应记录该螺栓在设备上的位置(或者编号)并做好标记,通知设备维修人员将此螺栓更换。

二. 超声波探伤仪探伤效果
采用原位超声波探伤可以免除整台设备大拆卸造成停产周期太长之弊,一旦探伤发现有某个或某些螺栓存在疲劳裂纹时只需要局部拆卸进行个别更换,不需要象以前那样全部拆卸下来并全部替换,这对于降低设备维修人员的劳动强度、缩短检修周期以及节约材料费用等都是非常有好处的。

自1996年起每年进行定期检测,按照我们目前采用的检测工艺与探伤灵敏度进行过检查的设备至今尚未出现因螺栓断裂而造成的设备故障。

文章链接:中国化工仪器网/Tech_news/Detail/118998.html。

相关主题