当前位置:文档之家› 连铸坯横裂产生的原因

连铸坯横裂产生的原因

连铸坯横裂产生的原因
横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。

经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。

裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。

且晶界上有细小质点(如A1N)的沉淀。

尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。

横裂产生的原因:1)振痕太深是横裂纹的发源地。

2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。

3)铸坯在脆性温度900~700~C矫直。

4)二次冷却太强。

防止横裂发生的措施:结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。

2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。

3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。

4)用火焰清理表面裂纹。

1.连铸坯表面纵裂产生的原因及其防止方法有哪些?
连铸坯表面纵裂纹,会影响轧制产品质量。

如长300mm、深2.5mm的纵裂纹在轧制板材上留下1125mm分层缺陷。

纵裂纹严重时会造成拉漏和废品。

研究指出:纵裂纹发源于结晶器弯月面初生坯壳厚度的不均匀性。

作用于坯壳拉应力超过钢的允许强度,在坯壳薄弱处产生应力集中导致断裂,出结晶器后在二次冷却区扩展。

纵裂产生的原因可归纳为:1)水口与结晶器不对中而产生偏流冲刷凝固壳。

2)保护渣熔化性能不良、液渣层过厚或过薄导致渣膜厚薄不均,使局部凝固壳过薄。

液渣层<10mm,纵裂纹明显增加。

3)结晶器液面波动。

液面波动>10㎜,纵裂发生几率30%。

4)钢中S+P含量。

钢中S>0.02%,P>0.017%,钢的高温强度和塑性明显降低,发生纵裂趋向增大。

5)钢中C 在0.12~0.17%,发生纵裂倾向增加。

防止纵裂发生的措施是:1)水口与结晶器要对中。

2)结晶器液面波动稳定在±10mm。

3)合适的浸入式水口插入深度。

4)合适的结晶器锥度。

5)结晶器与二次冷却区上部对弧要准。

6)合适的保护渣性能。

7)采用热顶结晶器,即在弯月面区75mm铜板内镶入不锈钢等导热性差的材料,减少了弯月面区热流50~70%,延缓了坯壳收缩,减轻了凹陷,因而也减小了纵裂发生几率。

12.连铸坯表面横裂产生的原因及其防止方法有哪些?
横裂纹是位于铸坯内弧表面振痕的波谷处,通常是隐藏看不见的。

经酸洗检查指出,裂纹深度可达7mm,宽度0.2mm。

裂纹位于铁素体网状区,而网状区正好是初生奥氏体晶界。

且晶界上有细小质点(如AlN)的沉淀。

尤其是C—Mn—Nb(V)钢,对裂纹敏感性更强。

横裂产生的原因:1)振痕太深是横裂纹的发源地。

2)钢中A1、Nb含量增加,促使质点(A1N)在晶界沉淀,诱发横裂纹。

3)铸坯在脆性温度900~700℃矫直。

4)二次冷却太强。

防止横裂发生的措施:1)结晶器采用高频率(200~400次/分)小振辐(2~4mm)是减少振痕深度的有效办法。

2)二次冷却区采用平稳的弱冷却,使矫直时铸坯表面温度大于900℃。

3)结晶器液面稳定,采用良好润滑性能、粘度较低的保护渣。

4)用火焰清理表面裂纹。

13.连铸坯表面网状裂纹产生的原因及其防止方法有哪些?
这种裂纹在铸坯表面酸洗之后才能发现,深度可达5mm。

产生的原因:
(1)高温铸坯表面吸收了结晶器的铜,而铜变成液体再沿奥氏体晶界渗透所致。

(2)铸坯表面铁的选择性氧化,使钢中残余元素(如Cu、Sn等)残留在表面沿晶界渗透形成裂纹。

研究表明,裂纹区有Cu、Sn、Sb等元素的富集,钢中Cu含量大于0.1%,裂纹加重;钢中Al含量增加,网状裂纹加重。

防止办法:1)结晶器表面镀Cr或Ni以增加硬度。

2)合适的二次冷却水量。

3)控制钢中残余元素如Cu<0.2%。

4)控制Mn/S>40。

14.连铸坯角部纵裂纹形成原因及防止措施有哪些?
角部纵裂纹可能位于宽面与窄面交界棱边附近,有的离棱边10~15㎜,有的刚好位于棱边上,严重时会造成漏钢。

形成的原因:对于方形,可能是沿结晶器高度水缝厚度不均匀,造成结晶器角部冷却不良;结晶器锥度太小,结晶器圆角半径太小。

对于板坯,可能是由于(1)窄面支撑不当造成窄面鼓肚。

窄面有6~12mm的鼓肚伴随有角部纵裂导致漏钢。

(2)锥度不合适。

(3)窄面冷却水不足。

改进方法:对于方坯1)控制好结晶器几何形状防止变形。

2)合适的圆角半径。

3)装配结晶器时,保持冷却水缝厚度一致,使冷却均匀。

对于板坯1)调整窄面足辊间隙使其向内l~2㎜限制鼓肚。

2)合适锥度(1.0%/m)。

3)合适冷却水量。

4)水口与结晶器对中不要偏流。

15.连铸坯角部横裂纹形成原因及防止措施有哪些?
这是一种位于铸坯角部的细小横裂纹。

其产生的原因可能是:1)结晶器锥度太大。

2)结晶器表面划伤。

3)结晶器出口与零段对弧不准。

改进方法:调整结晶器锥度,严格对弧,调整二次冷却使矫直时铸坯角部温度不能小于800℃。

16.连铸坯的皮下气泡是如何形成的?
在位于铸坯表皮以下,有直径和长度各在1毫米和10毫米以上的向柱状晶方向生长的大气泡。

这些气泡如裸露在外面的叫表面气泡,没有裸露的叫皮下气泡,比气泡小呈密集的小孔叫皮下针孔。

在加热炉内,铸坯的表面气泡或皮下气泡内表面被氧化而形成脱碳层,轧制后不能焊合而形成表面缺陷。

埋藏浅的气泡可用砂轮、风铲和火焰清理等办法清除。

埋藏深的气泡很难发现,会使产品产生裂纹。

钢水脱氧不足是产生气泡的主要原因,如采用强化脱氧,以降低钢中的氧含量,会使钢水中的铝含量达到0.01~0.015%,从而使气泡消除。

另外,钢水中的气体含量(尤其是氢)也是生成气泡的一个重要原因。

因此,加入钢水中的一切材料(如铁合金、渣粉等)应干燥,钢包、中间包应烘烤,润滑油用量要适当,注流采用保护浇注,对减少气泡的效果是明显的。

17.什么叫连铸坯表面折叠缺陷?
在铸坯表面有横向的折叠痕迹,严重时伴随有横向裂纹。

形成原因:
(1)结晶器内悬挂使凝固壳撕裂,由于结晶器的强冷,在撕裂处漏出的钢水立刻凝固在表面形成折叠痕迹;
(2)结晶器振动参数调整不当;
(3)结晶器出口与二次冷却段对弧不良;
(4)结晶器润滑不良,坯壳与铜壁粘结。

18.铸坯表面“冷痣”产生的原因是什么?
在铸坯表皮下嵌入的金属硬块或渣块叫“冷痣”。

产生原因是:
(1)敞开浇注时钢流的喷溅粘到结晶器表面的冷钢嵌入凝固壳;
(2)结晶器液面波动太大,把渣中的不溶物卷入凝固壳。

19.什么叫连铸坯表面的重皮缺陷?
在铸坯表面呈现横向不连续性,有明显的不完全焊合的痕迹叫重皮。

产生原因:
(1)结晶器的注流突然停浇,或瞬间停止拉坯。

如果停浇时间过长,就会在铸坯表面形成明显的重接;
(2)钢水太粘、温度过低、水口堵塞、注流偏离等都可能引起重皮。

20.为什么连铸坯表面有时呈凹状?
此缺陷常见于方坯或板坯窄面。

形成原因:
(1)结晶器锥度过大;
(2)二次冷却区不均匀冷却。

使用合适的结晶器锥度和均匀二次冷却可以防止。

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。

相关主题