第二章药物代谢本章提示:药物代谢是在体内酶的作用下使药物的化学结构发生变化,大多使有效药物转变为低效或无效的代谢物,有时也会产生活性代谢物;也有可能转变成毒副作用较高的产物。
而前药设计则是通过代谢转变产生有效药物。
执业药师应熟悉药物在体内代谢的化学变化类型,以及药物的化学结构变化后产生生物活性的变化。
药物进入机体后,一方面药物对机体产生诸多生理药理作用,即对疾病治疗作用;另一方面对机体来讲药物是一种外来的化学物质,机体组织将对药物进行作用设法将其排出体外,这就是药物的代谢。
药物代谢是指在酶的作用下将药物(通常是非极性分子)转变成极性分子,再通过人体的正常系统排泄至体外的过程;是药物在人体内发生的化学变化,也是人体对自身的一种保护机能。
因此研究药物在体内代谢过程中发生的化学变化,更能阐明药理作用的特点,作用时程,结构的转变以及产生毒副作用的原因。
药物的代谢通常分为二相:第Ⅰ相生物转化(Phase Ⅰ),也称为药物的官能团化反应,是体内的酶对药物分子进行的氧化、还原、水解、羟基化等反应,在药物分子中引入或使药物分子暴露出极性基团,如羟基、羧基、巯基、氨基等。
第Ⅱ相生物结合(Phase Ⅱ),是将第Ⅰ相中药物产生的极性基团与体内的内源性成分,如葡萄糖醛酸、硫酸、甘氨酸或谷胱甘肽,经共价键结合,生成极性大、易溶于水和易排出体外的轭合物。
但是也有药物经第Ⅰ相反应后,无需进行第Ⅱ相的结合反应,即排出体外。
其中第Ⅰ相生物转化反应对药物在体内的活性影响最大。
由于催化反应时酶对底物化学结构有一定的要求,因此不同化学结构的药物,其代谢的情况也不一样。
第一节药物的官能团化反应(第Ⅰ相生物转化)一、含芳环药物的代谢含芳环的药物主要发生氧化代谢,是在体内肝脏CYP 450酶系催化下,首先将芳香化合物氧化成环氧化合物,然后在质子的催化下会发生重排生成酚,或被环氧化物水解酶水解生成二羟基化合物。
生成的环氧化合物还会在谷胱甘肽S-转移酶的作用下和谷胱甘肽生成硫醚;促进代谢产物的排泄。
但是环氧化物若和体内生物大分子如DNA或RNA中的亲核基团反应,生成共价键的结合物,而使生物大分子失去活性,则产生毒性。
含芳环药物的氧化代谢是以生成酚的代谢产物为主,芳环上的供电子取代基能使反应容易进行,生成酚羟基的位置在取代基的对位或邻位;吸电子取代基则削弱反应的进行程度,生成酚羟基的位置在取代基的间位。
和一般芳环的取代反应一样,芳环的氧化代谢部位也受到立体位阻的影响,通常发生在立体位阻较小的部位。
如果药物分子中含有二个芳环时,一般只有一个芳环发生氧化代谢。
如苯妥英(Phenytoin)在体内代谢后生成羟基苯妥英失去生物活性。
HH苯妥英 羟基苯妥英而保泰松(Phenylbutazone)在体内经代谢后生成羟布宗(Oxyphenbutazone),抗炎作用比保泰松强而毒副作用比保泰松低,这是药物经代谢后活化的例子。
N N C 4H 9OON N C 4H 9OOOH保泰松 羟布宗含强吸电子取代基的芳环药物,如可乐定(Clonidine)和丙磺舒(Probenecid),则不发生芳环的氧化代谢。
N HN ClNH SO 2N(CH 2CH 2CH 3)2HOOC可乐定 丙磺舒芳环羟基化反应还受立体异构体的影响,如S(-)-华法林(Warfarin )的主要代谢产物是芳环7-羟基化物,而华法林的R(+)-异构体的代谢产物为侧链酮基的还原的化合物。
HS(-)-华法林(Warfarin ) 7-羟基华法林二、含烯烃和炔烃药物的代谢由于烯烃化合物比芳香烃的π键活性大,因此烯烃化合物也会被代谢生成环氧化合物。
这些环氧化合物比较稳定,常常可以被分离出并确定其结构。
烯烃类药物经代谢生成环氧化合物后,可以被转化为二羟基化合物,或者是和体内生物大分子如蛋白质、核酸等反应进行烷基化,而产生毒性,导致组织坏死和致癌作用。
例如抗惊厥药物卡马西平(Carbamazepine),在体内代谢生成10,11-环氧化物,这一环氧化物是卡马西平产生抗惊厥作用的活性成分,是代谢活化产物。
该环氧化合物会经进一步代谢,被环氧化物水解酶立体选择性地水解产生10S,11S-二羟基化合物,经由尿排出体外。
N CONH 2N CONH 2O2卡马西平 卡马西平10,11-环氧化物 10S,11S-二羟基卡马西平例如黄曲霉素B 1,经代谢后生成环氧化合物,进一步与DNA 作用生成共价键化合物,是该化合物致癌的分子机理。
炔烃类反应活性比烯烃大,被酶催化氧化速度也比烯烃快。
若炔键的碳原子是端基碳原子,则形成烯酮中间体,该烯酮可能被水解成生羧酸,也可能和蛋白质进行亲核性烷基化反应;若炔键的碳原子是非端基碳原子,则炔烃化合物和酶中卟啉上的吡咯氮原子发生N-烷基化反应。
这种反应使酶不可逆的去活化。
如甾体化合物炔雌醇则会发生这类酶去活化作用。
三、药物分子中饱和碳原子的代谢烷烃类药物经CYP-450酶系氧化后先生成含自由基的中间体,再经转化生成羟基化合物,酶在催化时具有区域选择性,取决于被氧化碳原子附近的取代情况。
自由基的中间体也会在CYP-450酶系作用下,发生电子转移,最后脱氢生成烯烃化合物。
长碳链的烷烃常在碳链末端甲基上氧化生成羟基,羟基化合物可被脱氢酶进一步氧化生成羧基称为ω-氧化;氧化还会发生在碳链未端倒数第二位碳上,称ω-1氧化。
如抗癫痫药丙戊酸钠(Sodium Valproate),经ω-氧化生成ω-羟基丙戊酸钠和丙基戊二酸钠;经ω-1氧化生成2-丙基-4-羟基戊酸钠。
HOCH 2CH 2CH 2CHCOONan-C 3H 7n-C 3H 7CH 3CH 2CH 2CHCOONaCH 3CHCH 2n-C 3H 7HOOCCH 2CH 2CHCOONan-C 3H 7HO烷烃化合物除了ω-和ω-1氧化外,还会在有支链的碳原子上发生氧化,主要生成羟基化合物。
烷基碳原子当和sp 2碳原子相邻时,如羰基的α-碳原子、芳环的苄位碳原子及双键的α-碳原子,由于受到sp 2碳原子的作用,使其活化反应性增强,在CYP-450酶系的催化下,易发生氧化生成羟基化合物。
处于羰基α-位的碳原子易被氧化,如镇静催眠药地西泮(安定)(Diazepam)在羰基的α-碳原子经代谢羟基化后生成替马西泮(羟基安定)(Temazepam)或发生N -脱甲基和α-碳原子羟基化代谢生成奥沙西泮(Oxazepam ),两者均为活性代谢产物。
NNC H 3OCl处于芳环和芳杂环的苄位,以及烯丙位的碳原子易被氧化生成苄醇或烯丙醇。
对于伯醇会进一步脱氢氧化生成羧酸;仲醇会进一步氧化生成酮。
例如,降血糖药甲苯磺丁脲(Tolbutamide )的代谢,先生成苄醇,最后形成羧酸,失去降血糖活性。
CH 3SO 2NHCONHC 4H 9CH 2OHSO 2NHCONHC 4H 9SO 2NHCONHC 4H 9COOH甲苯磺丁脲四、含卤素药物的代谢在日常生活中有许多药物和化学工业品中是含卤素的烃类如全身麻醉药,增塑剂、杀虫剂,除害剂,阻燃剂及化学溶剂等,这些卤代烃在体内经历了各种不同的生物代谢过程。
在体内一部分卤代烃和谷胱甘肽或硫醚氨酸形成结合物代谢排出体外,其余的在体内经氧化脱卤素反应和还原脱卤素反应进行代谢。
在代谢过程中,卤代烃生成一些活性的中间体,会和一些组织蛋白质分子反应,产生毒性。
氧化脱卤素反应是许多卤代烃的常见的代谢途径。
CYP-450酶系催化氧化卤代烃生成过渡态的偕卤醇,然后再消除卤氢酸得到羰基化合物(醛、酮、酰卤和羰酰卤化物)。
这一反应需被代谢的分子中至少有一个卤素和一个α-氢原子。
偕三卤代烃,如氯仿,比相应的偕二卤代烃及单卤代烃更容易被氧化代谢,生成酰氯或羰酰氯中间体活性更强,或水解生成无毒的碳酸和氯离子;或和组织中蛋白质分子反应,产生毒性。
抗生素氯霉素(Chloramphenicol)中的二氯乙酰基侧链代谢氧化后生成酰氯,能对CYP 450酶等中的脱辅基蛋白发生酰化,是产生毒性的主要根源。
CHCHCH 2OHO 2NOHNHCOCHCl 2CHCHCH 2OHO 2NOHNHCOCOCl CHCHCH 2OHO 2NOHNHCOCO-五、胺类药物的代谢胺类药物的氧化代谢主要发生在两个部位,一是在和氮原子相连接的碳原子上,发生N-脱烷基化和脱胺反应;另一是发生N-氧化反应。
N-脱烷基和氧化脱胺是一个氧化过程的二个不同方面,本质上都是碳-氮键的断裂,条件是与氮原子相连的烷基碳上应有氢原子(即α-氢原子),该α-氢原子被氧化成羟基,生成的α-羟基胺是不稳定的中间体,会发生自动裂解。
胺类药物的脱N-烷基代谢是这类药物的主要的和重要的代谢途径之一。
叔胺和仲胺氧化代谢后产生二种以上产物,而伯胺代谢后,只有一种产物。
如β-受体阻滞剂普萘洛尔(Propranolol)的代谢,经由二条不同途径,所得产物无生物活性。
OOH NHCH3CH3OOHNHOHCH3CH3OOHCHOOOHNHCH3CH3OHOOHNH2普萘洛尔一般来说,胺类药物在体内经氧化代谢生成稳定的N-氧化物主要是叔胺和含氮芳杂环,而伯胺和仲胺类药物的这种代谢通常比较少。
伯胺和仲胺结构中如果无α-氢原子,则氧化代谢生成羟基胺、亚硝基或硝基化合物。
酰胺类化合物的氧化代谢也与之相似。
胺类化合物N-脱烷基化的基团通常是甲基、乙基、丙基、异丙基、丁基、烯丙基和苄基,以及其它α-氢的基团。
取代基的体积越小,越容易脱去。
对于叔胺和仲胺化合物,叔胺的脱烷基化反应速度比仲胺快,这是与他们之间的脂溶性有关。
如利多卡因(Lidocaine)的代谢,脱第一个乙基比脱第二个乙基容易。
利多卡因在进入血脑屏障后产生的脱甲基化代谢产物会引起中枢神经系统的副作用。
ClNHO N C2H 5C 2H5ClClNHO NH2ClNHO NHC2H5利多卡因六、含氧药物的代谢含氧药物主要有醚类药物、醇类药物、酮类药物和羧酸类药物。
1.醚类药物的代谢醚类药物在肝脏微粒体混合功能酶的催化下,进行氧化O-脱烷基化反应,生成醇或酚,以及羰基化合物。
药物分子中醚的基团大部分是芳香醚,如可待因,维拉帕米,多巴胺,非那西汀等。
例如镇咳药可待因(Codeine)在体内约有10%的药物经O-脱甲基后生成吗啡,长期和大量服用可待因也会产生成瘾性的不良后果。
非甾体抗炎药吲哚美辛(Indomethacin)在体内约有50%经O-脱甲基代谢,生成无活性的化合物。
O-脱烷基化反应的速度和烷基链长度及分支有关,链越长,分支越多,O-脱烷基化速度越慢。
较长的碳链还会发生ω-和ω-1氧化。
有些药物分子中含有一个以上醚基,在这种情况下,通常只有一个醚基发生氧化O-脱烷基化反应。
代谢的结果和立体效应、电子效应及环上的取代基有关。