当前位置:
文档之家› (大气调制传递函数)利用大气调制传递函数复原天气退化图像
(大气调制传递函数)利用大气调制传递函数复原天气退化图像
间, 用 ()! 表示, 对应于标准相对时间的时刻称 作相对时间, 用 () 表示。每个 () 都对应一个权 值。() 值与权值对应关系表见参考文献 。 用 日落的时刻减去日出的时刻, 将结果除以 !" 得到 ()! 的值, 然后用当前时刻减去日出时刻, 再将结 果除以前面得到的 ()! , 则得到当前的 () 时刻。 得到成像时的 () 时间及其对应的权值后, 可以 得到一种基于相对时间概念的计算折射率结构常 " [ $] 数 $ % 的方法 :
+ + 在机器视觉领域, 户外图像应用中经常遇到 因受天气情况影响导致图像质量急剧下降的问 题。天气退化图像复原是利用某种先验知识尽可 能重建或复原天气退化图像, 消除或减弱天气情 况对图像质量带来的影响。 目前, 国内外学术界 从多方面对天气图像复原问题进行研究, 一些方 法是利用建立大气对图像退化的物理模型对天气 [ !, ’] , 退化图像进行复原 本文将介绍基于大气调 制传递函数复原天气退化图像的方法。
!+ 天气退化图像复原模型
!, !+ 调制传递函数基础 标
[ !]
调制 传 递 函 数 是 光 学 系 统 的 性 能 评 价 指 。对于光学系统, 调制传递函数表现为一个
函数。 首先介绍调制度的概念。调制度是定量表示 图景明暗 反 衬 程 度 的 一 种 方 法, 其定义为 / 0 ! 123 4 ! 156 , ! 123 和 ! 156 分别是景物 其中 / 是调制度, ! 123 7 ! 156 或图像的最大、 最小亮度值。 其中 " + " +! 。 我 用 " 像 代表实际像 们用 " 物 代表物体的调制度, 的调制度。实际成像时, 像的调制度会比物调制 , 度低 调制度降低的程度要用 " 像 和 " 物 进行比 $ ( #)0 较, 因而定义某一频率 # 的调制传递值为: "像 , 调制度 $ 都是空间频率的函数。 包 含 各 个 "物 英文名 空间频率 # 的就叫做调制传递函数,
’""(年!"月 第 ’$ 卷 第 & 期
沈阳航空工业学院学报 D8:>62; 8@ EFA6G26H I6?<5<:<A 8@ .A>862:<5C2; J6H56AA>56H
KC<, ’""( L8;, ’$+ M8, &
!""# !$%& ( ’""( ) "& "")* "$ 文章编号:
利用大气调制传递函数复原天气退化图像
[- ] <)9=> ? @ , A)BCDE=D> ’ &8 F/GEHIJKL K/)LD7 MN)=KB> KJ GHHE IK7KO *K=KB> PHJQKBKHJ7 N7KJL ) GC>7KP)= /HQD= RHE QDLE)Q)BKHJ [ ?] 8 FSSS
!" 实验仿真
为了检验基于大气调制传递函数模型天气退 化图像复原方法的有效性, 我们同样在 #$%&$’ 平台上为该方法做了仿真实验。图 ( 为使用大气 调制传递函数对天气退化图像进行复原。
1 !$ $" * 7 ! ! % 6 !4 1 !$ ( 1 3 ! 2 6 !4 1 !$ &) % . $ ! 5 6 !4 [ 2]
7 % ! 2 6 !4 &) 1 3 ! 5 6 !4 &) 1 3 ! 2 6 !4 *+ 7 ! ! 3万方数据 6 !4 1 !$ *+" 1 8 ! " 6 !4 1 !2 *+3 7 " ! 8 6
3# 天气退化图像的复原
如图 ! 所示天气退化图像复原流程, 我们首 先通过对大气调制传递函数的预测, 近似估计大 气对图像质量的退化过程。 当得到能先验信息 时, 通过预测公式我们可以计算出相应的湍流调 制传递函数和气溶胶调制传递函数, 并得出总的 大气调制传递函数。然后我们可以利用大气调制 传递函数在频域内对天气退化图像进行复原。通 过对户外景物图像中的大气调制传递函数造成的 衰减进行补偿。我们将天气退化图像进行傅式变 换, 得到频域内的退化图像, 然后在频域内滤除大 气调制传递函数, 将滤除大气调制传递函数后的 频域图像进行傅氏逆变换, 得到复原图像。 因为 天气退化图像中图像质量的衰减是受多方面因素 的共同作用形成的, 我们并不能准确地获取所有 影响图像质量的信息。大气调制传递函数模型只
为 /89:;2<586 =>26?@A> B:6C<586,简称 /=B。 /=B [ ’] 表达的是光学系统分配光能的一个特性 。 /=B 大于 " 小于 ! , 这只是体现光能分配的改变, 而不 是光能的损失。在频谱上表现为高频信息的损失 和低频信号的增加。 !, ’+ 基于大气调制传递函数的天气退化图像复 原模型 大气对图像质量产生影响的原因主要有两 (!) (’) 个: 大气湍流的影响。 大气中粒子对光的 散射和吸收引起图像质量的衰减和模糊。 这里引入大气调制传递函数的概念。拍摄户 外景物图像时, 影响图像质量的因素主要有摄像 系统本身造成的衰减和天气情况造成的退化, 摄 像系统的成像质量可以用调制传递函数来判断, 因此可以将天气情况造成的图像退化也作为调制 传递函数的一个分量, 即大气调制传递函数, 利用 已知的影响成像质量的天气因素和摄像系统的性 能参数求出大气调制传递函数,将其作为退化函 数, 对退化图像进行复原滤波, 以消除天气情况对 图像质量的影响。
图 ! 所示为基于大气调制传递函数的天气退 化图像复原流程图。 先验信息包括时间信息、 气 象信息和摄像系统的参数信息。计算湍流调制传 递函数时首先通过时间信息计算天气退化图像成 像时的时间权值, 然后通过时间权值和气象信息 计算折射率结构常数, 将折射率结构常数引入湍 流调制传递函数的算法得到湍流调制传递函数。 大气调制传递函数可以表示为湍流调制传递函数 和气溶胶调制传递函数的乘积。
1!# 3 ’(),+ . +/0 {1 $2! 3"$ # 3 $" & [! 1 " ( %! "
!" ! # 3 ) ] } (!) ’
{
" 为角空间频率, $ % 为折射率结构常数, & 其中, ’ 为光圈直径, 为光程, ! 为辐射波长, " 为系数, 近场时 " . ! , 远场时 " . 4 ! $ 。其中光程、 辐射波 长、 光圈直径都是易于获取的, 因此对于湍流调制 传递函数的预测主要集中在对折射率结构常数 $" % 的预测 。 其中一种简单的经验模型是基于相
3 "% 6 !4 1 3 .%&) 1 ! ! 3- 6 !4 1 $ +,- 7 2 ! 34 6 !4 1 ( 3)
(")
&) 为相对湿度, +, 为太阳辐射通量, * 为时间权 *+ 为风速, ( 为温度。 值, " ! "# 气溶胶调制传递函数预测 气溶胶的主要成分为霾。其粒子尺度的变化 范围有两三个量级, 光的衰减绝大部分是由大量 “ 大” 半径在 4 ! ! 9 ! 微米之间的 粒子造成的, 半 径近 4 ! 3 微米的那些粒子对能见度影响最显著, 半径大于 ! 微米的大粒子要少得多, 但对前向散 [ 8] 。 射影响很大 散射导致了点目标扩散, 从而在 图像平面上产生了模糊。这里我们引入角空间截 "/ . # # ! , 止频率 " / 的概念, 其中 # 为粒子直径, ! 为波长。" / 的值一般较小, 在高空间频率时, 气 则实际成像的 溶胶调制传递函数可近似为常数, 气溶胶影响可以由预测得到的气溶胶 ’() : 来近
! ’ 王+ 挥 + 刘晓阳
( !, 沈阳航空工业学院机械与汽车学院,辽宁 沈阳+ !!"!$( ; ’, 沈阳理工大学信息科学与工程分院, 辽宁 沈阳+ !!"!(% )
摘+ 要: 描述了天气退化图像形成的原因, 及其复原原理, 并基于大气调制传递函数建立了图像 退化的物理模型, 阐述了大气调制传递函数及其两个分量湍流调制传递函数和气溶胶调制传递 函数的预测方法, 利用得到的大气调制传递函数的估计值, 对天气退化图进行复原。 关键词: 天气退化图像; 图像复原; 大气调制传递函数 -** 中图分类号: . 文献标识码:
!4 1 !- +, 1 ! ! 8 6 !4 1 !- ($+- 7 ! ! - 6 !4 1 !- ($+-" 1 3 ! 5 6 !4 1 !3 其中 ($+- 为中间系数, ($+- . 5 ! %5 6 !4 1 - &) 1 " ! 2$ 6 !4 1 $ &)" 7 - ! 8% 6 !4 1 2 &)3 1 - ! -8 6 !4 1 5 &)- 7 ! ! %% 6 !4 1 !! &)$ 1 % !
[ $] 对时 间 概 念 的 。 将 日 出 和 日 落 之 间 时 间 的 ! # !" 作为相对时间的一个小时, 叫做标准相对时
+0 、 - 0 分别为大气散射和吸收系数, 式中, 它们之 和为衰减系数 1 2 , 一般情况下 - 0 远远小于 + 0 。 为简化计算, 可以将可见光波段的衰减系数近似 [ 5] 为 1 2 . 3 ! 5!" # & 3 , 其中 & 3 为能见距离。
[ $] 似表示, 表达式如下 : " +/0 [ 1 -0 & 1 +0 & ( " # "/ ) ] , "+" / , ’() : . # (-) +/0 [1 ( -0 7 +0 ) &] , " ; "/