当前位置:文档之家› 最新大学物理-量子力学基础习题思考题及答案

最新大学物理-量子力学基础习题思考题及答案

大学物理-量子力学基础习题思考题及答案习题22-1.计算下列客体具有MeV 10动能时的物质波波长,(1)电子;(2)质子。

解:(1) 电子高速运动,设电子的总能量可写为:20K E E m c =+ 用相对论公式,222240E c p m c =+ 可得p ===h pλ==834-=131.210m -=⨯(2)对于质子,利用德布罗意波的计算公式即可得出:3415h 9.110m p λ--====⨯22-2.计算在彩色电 视显像管的加速电压作用下电子的物质波波长,已知加速电压为kV 0.25,(1)用非相对论公式;(2)用相对论公式。

解:(1)用非相对论公式:mmeU h mE h 123193134108.71025106.1101.921063.622p h ----⨯=⨯⨯⨯⨯⨯⨯⨯====λ(2)用相对论公式:420222c m c p +=EeU E E k ==-20c mm eU eU c m hmEh 12220107.722ph -⨯=+===)(λ22-3.一中子束通过晶体发生衍射。

已知晶面间距nm 1032.72-⨯=d ,中子的动能eV 20.4k =E ,求对此晶面簇反射方向发生一级极大的中子束的掠射角.解:先利用德布罗意波的计算公式即可得出波长:3411h 1.410p m λ--====⨯再利用晶体衍射的公式,可得出:2sin d k ϕλ= 0,1,2k =…11111.410sin 0.095227.3210k d λϕ--⨯===⨯⨯ , 5.48ϕ=22-4.以速度m/s 1063⨯=v 运动的电子射入场强为5V/cm =E 的匀强电场中加速,为使电子波长A 1=λ,电子在此场中应该飞行多长的距离?解:3410h 110p m λ--====⨯可得:U=150.9V ,所以 U=Ed ,得出d=30.2cm 。

22-5.设电子的位置不确定度为A 1.0,计算它的动量的不确定度;若电子的能量约为keV 1,计算电子能量的不确定度。

解:由测不准关系: 3424101.0510 5.2510220.110h p x ---⨯∆===⨯∆⨯⨯ 由波长关系式:Ech=λ 可推出: E E c h ∆=∆λ2151.2410E E E J hc pcλ-∆∆===⨯∆ 22-6.氢原子的吸收谱线A 5.4340=λ的谱线宽度为A 102-,计算原子处在被激发态上的平均寿命。

解:能量hcE h νλ==,由于激发能级有一定的宽度ΔE ,造成谱线也有一定宽度Δλ,两者之间的关系为:2hcE λλ∆=∆由测不准关系,/2,E t ∆∆≥平均寿命τ=Δt ,则22224t E hc c λλτλπλ=∆===∆∆∆102112108(4340.510)510s 4 3.141010310----⨯==⨯⨯⨯⨯⨯⨯ 22-7.若红宝石发出中心波长m 103.67-⨯=λ的短脉冲信号,时距为)s 10(ns 19-,计算该信号的波长宽度λ∆。

解:光波列长度与原子发光寿命有如下关系:x c t ∆=∆2224x x p λλπλλ∆==≈∆∆∆ 722389(6.310) 1.32310nm 31010c t λλ---⨯∆===⨯∆⨯⨯22-8.设粒子作圆周运动,试证其不确定性关系可以表示为h L ≥∆∆θ,式中L ∆为粒子角动量的不确定度,θ∆为粒子角位置的不确定度。

证明:当粒子做圆周运动时,半径为r ,角动量为:L=rmv=rp 其不确定度P r L ∆=∆而做圆周运动时: θ∆=∆r x利用:h x P ≥∆•∆ 代入,可得到:h L ≥∆∆θ。

22-9.计算一维无限深势阱中基态粒子处在0=x 到3/L x =区间的几率。

设粒子的势能分布函数为:⎩⎨⎧><∞=<<=L x x x U L x x U 和0,)(0,0)(解:根据一维无限深势阱的态函数的计算,当粒子被限定在0<x<l 之间运动时,其定态归一化的波函数为:⎪⎩⎪⎨⎧><=ψ<<=ψL x x x L x x ln l x nn 和0,0)(0,sin 2)(π概率密度为: L x x ln l x P n <<=0,sin 2)(2π粒子处在0=x 到3/L x =区间的几率:32sin 2131sin 2)(230πππn n x l n l x P ln -==⎰如果是基态,n=1,则3202112()sin sin 0.195323ln P x x l l πππ==-=⎰22-10.一个质子放在一维无限深阱中,阱宽m 1014-=L 。

(1)质子的零点能量有多大?(2)由2=n 态跃迁到1=n 态时,质子放出多大能量的光子?解:(1)由一维无限深势阱粒子的能级表达式:228n ma h E n = n=1时为零点能量:。

J mah E n 1321029.38-⨯== (2)由n=2态跃迁到n=1态时,质子放出光子的能量为:。

)(J mah E E E 132121087.9814-⨯=-=-=∆22-11.对应于氢原子中电子轨道运动,试计算3=n 时氢原子可能具有的轨道角动量。

解:当n=3,l 的可能取值为:0,1,2。

而轨道角动量h l l L )(1+= 所以 L 的取值为:0,h 222-12.氢原子处于1,2==l n 的激发态时,原子的轨道角动量在空间有哪些可能取向?并计算各种可能取向的角动量与z 轴的夹角?解:l=1,所以轨道角动量:h h l l L 21=+=)( 10±=,m 三个取向。

夹角分别为: 20πθ==,z L 4πθ==,h L z 43πθ=-=,h L z思考题22-1.证明玻尔理论中氢原于中的电子轨道是电子德布罗意波长的整数倍。

证明:分别看这两个内容是什么:玻尔理论中氢原于中的电子轨道:220202me h n r n r n πε==电子德布罗意波长: 先求其能量:2204281hme n E n ε=再代入德布罗意波长求解式子中:2202me h n mEhπελ== 可见:λn r n = 是它的整数倍。

22-2.为什么说电子既不是经典意义的波,也不是经典意义的粒子? 答:因为单个的电子是不具有波动的性质的,所以它不是经典意义的波,同时对于经典意义的粒子它的整体行为也不具有波动性,而电子却具有这个性质,所以电子也不是经典意义的粒子。

22-3.图中所示为电子波干涉实验示意图,S 为电子束发射源,发射出沿不同方向运动的电子,F 为极细的带强正电的金属丝,电子被吸引后改变运动方向,下方的电子折向上方,上方的电子折向下方,在前方交叉区放一电子感光板A ,1S 、2S 分别为上、下方电子束的虚电子源,21SS S S =,底板A 离源S 的距离为D ,设a D >>,电子的动量为p ,试求: (1)电子几率密度最大的位置;(2)相邻暗条纹的距离(近似计算)。

答:(1)电子的德布罗意波长:ph=λ 类似于波的干涉现象,在两边的第一级明纹之间分布的电子最多,所以其几率最大的位置应该在apDh d D 2±=±λ之间。

(2)相邻暗条纹的距离:apDh d D x 2==∆λ22-4.在一维势箱中运动的粒子,它的一个定态波函数如图a 所示,对应的总能量为eV 4,若它处于另一个波函数(如图b 所示)的态上时,它的总能量是多少?粒子的零点能是多少? 答:由一维无限深势阱粒子的能级表达式:20n E E n = 。

在a 图中,n=2,所以粒子的零点能E 0=1。

若它处于另一个波函数(n=3)的态上时,它的总能量是9320203===E n E E22-5.图中所示为一有限深势阱,宽为a ,高为U 。

(1)写出各区域的定态薛定谔方程和边界条件;(2)比较具有相同宽度的有限深势阱和无限深势阱中粒子的最低能量值的大小。

答:第I 区域定态薛定谔方程:0212212=+)()(x hmE dx x d ψψ 第II 区域定态薛定谔方程:0222222=-+)()()(x h U E m dx x d ψψ边界条件:)()(2221a a -=-ψψ )()(2221aa ψψ=22-6.在钠光谱中,主线系的第一条谱线(钠黄线)是由3s 3p -之间的电子跃迁产生的,它由两条谱线组成,波长分别为A 963.58891=λ和A 930.58952=λ。

试用电子自旋来解释产生双线的原因。

答:Na 光谱双线产生的原因是比电相互作用小的磁相互作用的结果,是自旋—轨道相互作用能,是一个小量。

即电子轨道运动产生的磁场和电子自旋磁矩的作用,使原子的能级发生改变,其中电子自旋磁矩S mes -=μ,在Z 方向投影有两条,所以Na 光谱产生了双线。

相关主题