当前位置:文档之家› 第四章--光电子技术.

第四章--光电子技术.


(3)多碱光阴极 当锑与一种以上碱金属结合可获得更好的光阴极材料 双碱:(Sb-K-Cs)(Sb-Rb-Cs)( Sb-K-Na ) 三碱:(Sb-K-Na-Cs),夜视技术背景下发展起来 四碱:(Sb-K-Na-Rb-Cs) 主要性能: 量子效率:在可见波段又很高的量子效率25%左右; 工作方式:透射 光谱响应:可到红外。 (4)氧化的银-镁合金(AgMgO[Cs])
(2) 单碱光电阴极--锑铯(Sb-Cs)光阴极 本征型半导体材料,1936年开始使用。 制作:面板上蒸纯Sb膜,引入Cs进行热处理; 主要性能:光谱响应范围 可见+紫外; 长波限波长:700nm附近; 峰值波长:300-500nm,依赖于窗材料; 量子效率:最高可达30%; 工作方式:反射或透射; 灵敏度:积分灵敏度可达70-150uA/lm; 该材料目前被广泛用作光电阴极材料,同时也可用作光 电倍增管的倍增极,工作电压为400V,倍增系数 可达10。
E E
δE
2 1 EF EA
dN/dE
x
EA:表面势垒的高度-金属对电子的亲和势,自由电子的能量 大于EA时才能逸出; EF:费米能级
(1)T=0K的情况 能量最大的电子处在费米能级上,即E= EF 吸收光子能量hv,从表面逸出的光电子具有的动能:
1 2 mv EF hv E E A 2
制作:沉积的Ag膜用辉光放电的方法氧化后再引入 Cs敏化制成 光谱响应:光谱响应范围 300-1200nm,响应曲线 有两个峰值:分别为350nm和800nm 工作方式:反射或透射 灵敏度:较低,光照灵敏度30uA/lm,辐照灵敏度3mA/W. 缺点:长期光照射,会产生严重的疲劳现象,疲劳后 光谱相应曲线也会发生变化,应用受到限制。 改进:把Bi-Cs-O与Ag-O-Cs相结合,可获得在可见光 谱范围内具有较均匀和高灵敏度的Bi-Ag-O-Cs 光电阴极。目前该种材料很少使用;
2 m max
v0
v
(3)对辐射吸收率低 (4)体内自由电子多,碰撞使得电子逸出困难。
(B)半导体材料的光电子发射
目前光电阴极多采用半导体材料,其优点是:
(1)对辐射吸收系数大 (2)导电性能适中,电子向表面运动时损失能量小 (3)价带中电子密度很大,容易受激发跃迁 (4)逸出功较小 半导体光电子发射过程 (1) 对光子吸收: 价带上的电子、杂质能级上的电子、自由电子都可以吸收入射 光子而跃迁到导带,当其能量高于EA时就能逸出表面。 本征发射:光电子来源于价带的发射,相应的材料叫本征发射。 优点:吸收系数很高(约105/cm),量子效率很高可达20%-30%。 典型材料:“锑铯Sb-Cs”、“锑钾钠铯Sb-K-Na-Cs”等阴极材料。
Ec
EA
Δ
Ea
Δ:为从杂质能级上 释放一个电子到导带所需 要的最小能量 EA:表面势垒 Ea:杂质能级
光电子逸出功为:
W hv0 E A

(C)典型实用光电阴极材料
(1)银氧铯(Ag-O-Cs,[Ag]-Cs2OAgCs-Cs)光阴极 材料类型:杂质型半导体光电阴极材料, 1929开始使用,1934年研制的第一支红外变像管就采用这种阴 极,促进了当时军事技术的发展。
► (3)克服表面势垒逸出:
到达表面的光电子能否逸出取决于它的能量是 否大于表面势垒。
► 半导体的表面势垒情况
●本征半导体:
EA
Ec
EF Ev
Wφ EgEv:价带Βιβλιοθήκη 级 Ec:导带能级 EA:表面势垒
本征半导体的逸出功为:
W hv0 Eg E A
► 杂质半导体:其光电子发射中心在杂质能级上
第四章:光电子发射探测器
主要内容:介绍利用光电子发射效应制成的光电器件,重点介 绍光电倍增管; 应用范围:主要用于可见和紫外光辐射的探测,长波长一般 限于1.06um以内的光辐射探测
4.1 光电子发射
光电子发射效应:
光辐射 器件光敏体 电子获得足够能量逸出 光敏材料
(A) 金属材料的光电子发射 金属中自由电子能量分布:费米分布 曲线1:T=0K 曲线2:T>0 右图为金属表面的势垒 的情况
杂质发射:光电子来源于杂质能级的发射,相应的材料叫杂质
发射体, 缺点:杂质浓度一般不超过1%,杂质发射的量子效率较低 为1%左右 典型材料:“银氧铯(Ag-O-Cs)”
► (2)光电子向表面运动:
半导体中的自由电子浓度很小,电子散射所造成 的能量损失可以忽略不计。电子能量损失的主要 是:晶格散射和与价带电子的碰撞,而晶格散射 造成的能量损失非常的小。 在以晶格散射为主的半导体中,对于某些吸收系 数大于106/cm的半导体,它的逸出深度比较大, 所产生的光电子几乎全部都以足够的能量逸出。
阳极平 均电流 (mA) 0.1
28
GDB443
KCsSb
1500
H2012
GDB235 GDB240
GDB413 GDB415 GDB424 GDB423 GDB512
T35B
用于倍增极材料,在400V时,倍增系数接近6。
光谱响应特性
外部 直径 (mm)
极限额定值
型号
光谱 响应 代号 T35B
光谱响 应范围 (nm)
300-670
峰值 波长 (nm) 400
阴极 材料
光 窗 材 料 B
倍增 结构 级数
BG/11
配套管 阳极 电压 座 (V)
GZS14-15
末极 电压 (V) 250
(4.1-1)
Δ E:电子向表面运动过程中由于散射损失的能量 W E A EF :金属材料的逸出功。 在散射损耗ΔE 为 : 0,光电子发射具有最大的初始速度
1 2 m max hv W h(v v0 ) 2
(4.1-2)
hv0 W
v0 为截止频率
(2)T>0 K的情况 能量分布如图曲线2 ▲部分自由电子的能量比费米能级EF高出δE,由于这些 电子的存在,在相同入射光子能量条件下,会出现初始 速度大于vmax的光电子 1 2 ▲在最大动能与入射光频率曲 线上看,会出现在v<vo时仍然 存在光电效应,如下图所示 爱因斯坦公式:在T=0时才严 格成立; 金属材料的缺点: (1)逸出功高 (2)表面反射强
相关主题