本技术涉及工业机器人减速机技术领域,尤其是一种工业机器人用谐波减速机性能试验方法,其方法步骤包括:加载运行前,应检查减速器的润滑和加载器的冷却是否正常;启动电机,在额定转速和额定负载下连续运转500h;在运行过程中,每0.5h检查一次样机温度,温升不得超过45℃;进一步分别进行空载跑合试验、负载跑合试验和超载性能试验。
本技术有益效果:本技术的减速器回转传动精度误差测量方法计算简单,测量参数少,求得其回转传动误差较为简便;试验台具有测量精度高,结构简单,操作简易的特点。
技术要求1.一种工业机器人用谐波减速机性能试验方法,其特征在于:其方法步骤包括:加载运行前,应检查减速器的润滑和加载器的冷却是否正常;启动电机,在额定转速和额定负载下连续运转500h;在运行过程中,每0.5h检查一次样机温度,温升不得超过45℃;进一步分别进行空载跑合试验、负载跑合试验和超载性能试验;其中,超载性能试验,超载50%时,能正常运转30min,超载150%时,能正常运转1min,超载性能试验必须在空载跑合试验和负载跑合试验的基础上进行;所述空载跑合试验将调试好的减速器,在额定转速下正、反转空载跑合各2h,检查接合处不得漏油,联接件不得松动,运转平稳,无异常响声;所述负载跑合试验将空载跑合完的减速器在额定转速下,施加额定负载的50%,75%,100%,均正反转各2h,检查项目同空载跑合试验。
2.如权利要求1所述的一种工业机器人用谐波减速机性能试验方法,其特征在于:所述超载性能试验将负载跑合完的减速器,在额定转速下,超载50%,正、反转各30min;超载150%,正、反转各1min,检查启动时不允许有滑齿现象,启动后应能正常运转。
3.如权利要求1所述的一种工业机器人用谐波减速机性能试验方法,其特征在于:所述减速器在超载运行时,不允许有异常的振动、噪声和零件的损坏。
4.如权利要求3所述的一种工业机器人用谐波减速机性能试验方法,其特征在于:进一步的试验后,将减速器拆洗干净,换油重新装配;检查启动转矩、刚度和传动精度应符合规定。
5.如权利要求1所述的一种工业机器人用谐波减速机性能试验方法,其特征在于:其中,空载跑合完启动转矩测试,采用加载盘、砝码。
6.如权利要求5所述的一种工业机器人用谐波减速机性能试验方法,其特征在于:测试时,在输入轴上固定一个圆盘,圆盘上绕一个加载盘,供加砝码用,加载时防止冲击,当所家砝码驱动输入轴转动时的转矩,即为启动转矩,然后,反方向重复上述步骤,在正、反方向不同位置测若干点,取其最大值。
技术说明书一种工业机器人用谐波减速机性能试验方法技术领域本技术涉及工业机器人减速机技术领域,尤其是一种工业机器人用谐波减速机性能试验方法。
背景技术工业机器人动力单元主要由伺服电机和减速器组成,其成本占整机成本的65%以上,作为机器人的核心部件,其精度和可靠性至关重要。
然而,国产工业机器人的动力单元主要依靠进口,自主生产的工业机器人动力单元不成熟,可靠性低。
工业机器人动力单元的伺服电机具有惯量小、响应速度快、维护和保养要求低等特点;工业机器人动力单元的减速器是工业机器人的关键技术之一,具有传动刚度高、传动比大、惯量小、输出转矩大以及传动平稳、体积小、抗冲击力强等优点。
工业机器人动力单元安装于工业机器人关节臂内部的狭小空间中,散热慢、易振动、工作环境恶劣、容易发生故障。
工业机器人动力单元可靠性试验台能够模拟其实际工况,并进行可靠性试验,同时还能对相关参数进行实时检测。
通过对动力单元的可靠性试验,暴露自主生产的工业机器人动力单元的故障,通过对故障的记录和分析,改进产品,提高动力单元的可靠性,进而提高国产工业机器人的可靠性。
当前,国内外针对不同工业机器人动力单元的伺服电机和减速器分别设计了大量的试验台,但还没有针对工业机器人动力单元整体设计试验台,以检测动力单元整体的性能和可靠性。
现有只存在一些工业机器人动力单元的减速器性能检测试验台,该试验台普遍采用“输入电机、扭矩或转速传感器、减速器、扭矩或转速传感器、磁粉制动器”结构,这种,只适用于减速器的性能参数检测,不能用于可靠性试验。
对工业机器人的动力单元整体进行可靠性试验比分别对动力单元的减速器和伺服电机进行试验更有效率并且能更加方便的模拟实际工况。
回转传动精度是RV减速器的主要性能指标之一,它是指输入轴转过任意角时,实际输出转角与理论输出转角的差值。
RV减速器的该项性能直接影响工业机器人的定位精度,因此围绕如何提高该减速器回转传动精度对减速器的理论研究及实际应用都有着重要意义。
工业机器人的普及是实现自动化生产,提高社会生产效率,推动企业和社会生产力发展的有效手段。
而国内,工业机器人产业虽尚处于理论研究及小批量样机试制阶段,但具有强劲的增长势头,发展空间巨大。
而我国在研制机器人的初期没有同步发展相应的零部件产业,使得国内企业在生产机器人的过程中,只能依赖配套进口的零部件,这无疑大大削弱了我国企业的市场竞争力。
因此,要形成工业机器人的产业化,需先形成相关零部件生产的产业化,而工业机器人的关节减速器则为其中需要重点发展的一项。
RV传动是在摆线针轮传动基础上逐步发展起来的一种新型多级、大速比行星式传动,与现有的普通行星传动形式相比,该减速器采用共用曲柄轴和中心圆盘支撑的结构形式组成封闭式行星传动,这样不仅克服了原有摆线针轮传动的一些缺点,而且较谐波减速器又具有高得多的疲劳强度、刚度和寿命,加之回差和传动精度稳定,不会随着使用时间的增长而显著降低,并具有传动比大、刚度大、运动精度高、传动效率高、回差小、承载平稳等优点,因而特别适用于工业机器人及其它精密伺服传动系统。
RV减速器正是因为这一系列的优点,受到了国内外相关企业和科研单位的广泛关注,尤其在工业机器人领域发挥着越来越大的作用。
现有的RV减速器回转传动精度误差测量试验台只是考虑了摆线齿轮齿廓误差的影响,并未计及摆线齿轮以外的其他构件的误差,且计算复杂。
因而,对于存在多曲柄轴、双摆线轮以及复杂输入输出机构的RV减速器,及高速级和其他各零部件的加工、装配误差及间隙的时候,根据现有方法而求得其回转传动误差较为复杂。
因此,对于上述问题有必要提出一种工业机器人用谐波减速机性能试验方法。
技术内容本技术目的是克服了现有技术中的不足,提供了一种工业机器人用谐波减速机性能试验方法。
为了解决上述技术问题,本技术是通过以下技术方案实现:一种工业机器人用谐波减速机性能试验方法,其方法步骤包括:加载运行前,应检查减速器的润滑和加载器的冷却是否正常;启动电机,在额定转速和额定负载下连续运转500h;在运行过程中,每0.5h检查一次样机温度,温升不得超过45℃;进一步分别进行空载跑合试验、负载跑合试验和超载性能试验。
其中,超载性能试验,超载50%时,能正常运转30min,超载150%时,能正常运转1min,超载性能试验必须在空载跑合试验和负载跑合试验的基础上优选地,所述空载跑合试验将调试好的减速器,在额定转速下正、反转空载跑合各2h,检查接合处不得漏油,联接件不得松动,运转平稳,无异常响声。
优选地,所述负载跑合试验将空载跑合完的减速器在额定转速下,施加额定负载的50%,75%,100%,均正反转各2h,检查项目同空载跑合试验。
优选地,所述超载性能试验将负载跑合完的减速器,在额定转速下,超载50%,正、反转各30min;超载150%,正、反转各1min,检查启动时不允许有滑齿现象,启动后应能正常运转。
优选地,所述减速器在超载运行时,不允许有异常的振动、噪声和零件的损坏。
优选地,进一步的试验后,将减速器拆洗干净,换油重新装配。
检查启动转矩、刚度和传动精度应符合规定。
优选地,其中,空载跑合完启动转矩测试,一般采用加载盘、砝码。
优选地,测试时,在输入轴上固定一个圆盘,圆盘上绕一个加载盘,供加砝码用,加载时防止冲击,当所家砝码驱动输入轴转动时的转矩,即为启动转矩,然后,反方向重复上述步骤,在正、反方向不同位置测若干点,取其最大值。
本技术有益效果:本技术的减速器回转传动精度误差测量方法计算简单,测量参数少,求得其回转传动误差较为简便;试验台具有测量精度高,结构简单,操作简易的特点;电力测功机对动力单元进行扭矩加载,可自动调节施加的扭矩的大小,采用径向力加载单元模拟工业机器人动力单元在启动或运转过程中承受的径向力,并可自动调节施加的径向力的大小;采用联轴器连接伺服电机输出轴和减速器输入轴,能模拟伺服电机和减速器实际连接的同时更易于电机的更换,减速器支架通过减速器套与减速器间接固定,安装多种型号的减速器;可以实现在减速器两种不同输出方式下对动力单元的可靠性试验;在进行试验时可以实时采集动力单元相关性能参数并显示,判断出动力单元性能变化趋势,能够模拟工业机器人的动力单元的实际工况并进行可靠性试验,具有更高的试验效率,自动化程度高,可以实时采集、计算动力单元振动、温度、传动效率、功率损耗等参数,可用于减速器的传动误差、回差、齿隙检测。
以下将结合附图对本技术的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本技术的目的、特征和效果。
附图说明图1是本技术的流程图。
具体实施方式以下结合附图对本技术的实施例进行详细说明,但是本技术可以由权利要求限定和覆盖的多种不同方式实施。
如图1所示,一种工业机器人用谐波减速机性能试验方法,其方法步骤包括:加载运行前,应检查减速器的润滑和加载器的冷却是否正常;启动电机,在额定转速和额定负载下连续运转500h;在运行过程中,每0.5h检查一次样机温度,温升不得超过45℃;进一步分别进行空载跑合试验、负载跑合试验和超载性能试验。
其中,超载性能试验,超载50%时,能正常运转30min,超载150%时,能正常运转1min,超载性能试验必须在空载跑合试验和负载跑合试验的基础上进一步的,所述空载跑合试验将调试好的减速器,在额定转速下正、反转空载跑合各2h,检查接合处不得漏油,联接件不得松动,运转平稳,无异常响声,所述负载跑合试验将空载跑合完的减速器在额定转速下,施加额定负载的50%,75%,100%,均正反转各2h,检查项目同空载跑合试验。
进一步的,所述超载性能试验将负载跑合完的减速器,在额定转速下,超载50%,正、反转各30min;超载150%,正、反转各1min,检查启动时不允许有滑齿现象,启动后应能正常运转。
此外,所述减速器在超载运行时,不允许有异常的振动、噪声和零件的损坏,进一步的试验后,将减速器拆洗干净,换油重新装配。
检查启动转矩、刚度和传动精度应符合规定。
其中,空载跑合完启动转矩测试,一般采用加载盘、砝码,测试时,在输入轴上固定一个圆盘,圆盘上绕一个加载盘,供加砝码用,加载时防止冲击,当所家砝码驱动输入轴转动时的转矩,即为启动转矩,然后,反方向重复上述步骤,在正、反方向不同位置测若干点,取其最大值。