当前位置:文档之家› 四旋翼飞行器论文(原理图+程序)

四旋翼飞行器论文(原理图+程序)


2 四旋翼自主飞行器控制算法设计
2.1 四旋翼飞行器动力学模型 设计的小型四旋翼飞行器适用于室内低速飞行,因此忽略空气阻力的影响。因此,简化 后的飞行器动力学模型为
x u4 (sin cos cos sin sin ) / m y u4 (sin cos sin sin cos ) / m z (u4 cos sin mg ) / m u l / I 1 X u2 l / I Y u3 / I Z
-2-
所以选择直流无刷电机作为动力源。
1.3 电机驱动方案的选择与论证
方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。但是电阻 网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。更主要的问题在于一般电动机 的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。 方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调 整。这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命 较 短、可靠性不高。 方案三:采用全桥驱动 PWM 电路。这种驱动的优点是使管子工作在占空比可调的开关状 态,提高使用效率实现电机转速的微调。并且保证了可以简单的方式实现方向控制。 基于上述理论分析,选择方案三。
式中 [ x
式 1-1
y
z ]T 为四旋翼飞行器在导航坐标系下的线位移, [ x y z ]T 为运动加速度,m
为飞行器质量, , , 分别为机体的偏航角、俯仰角和横滚角,l 为旋翼面中心到四旋翼飞行 器质心的距离,I X , IY , I Z 为轴向惯性主矩。该动力学模型对四旋翼飞行器的真实飞行状态进 行了合理的简化,忽略了空气阻力等对系统运行影响较小的参数,使得飞行控制算法更加简 洁。 2.2 PID 控制算法结构分析 在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个控制回路,即位置
1.2 电机的选择与论证
四旋翼无人飞行器是通过控制四个不同无刷直流电机的转速,达到控制四旋翼无人飞行 器的飞行姿态和位置,与传统直升机通过控制舵机来改变螺旋桨的桨距角,达到控制直升机 的目的不同。在电机的选型上,主要有直流有刷电机和直流无刷电机两种。 方案一:直流有刷电机是当前普遍使用的一种直流电机,它的驱动电路简单、控制方法 成熟,但是直流有刷电机使用电刷进行换向,换向时电刷与线圈触电存在机械接触,电机长 时间高速转动使极易因磨损导致电气接触不良等问题,而且有刷电机效率低、力矩小、重量 大,不适合对功率重量比敏感的电动小型飞行器。 方案二:直流无刷电机能量密度高、力矩大、重量轻,采用非接触式的电子换向方法, 消除了电刷磨损,较好地解决了直流有刷电机的缺点,适用于对功率重量比敏感的用途,同 时增强了电机的可靠性。
控制器的原理,设 k p , ki , kd 分别为比例项、积分项和微分项系数,有
x d ) x k p ( x xd ) ki ( x xd )dt kd ( x y d ) y k p ( y yd ) ki ( y yd )dt kd ( y x k p ( z zd ) ki ( z zd )dt kd ( z zd )
本文来自 /PVTe8Q
更详细信息请登陆阅读


1 系统方案论证与控制方案的选择............................................................................................. - 2 1.1 地面黑线检测传感器............................................................................................................. - 2 1.2 电机的选择与论证................................................................................................................. - 2 1.3 电机驱动方案的选择与论证................................................................................................. - 3 2 四旋翼自主飞行器控制算法设计............................................................................................. - 3 2.1 四旋翼飞行器动力学模型..................................................................................................... - 3 2.2 PID 控制算法结构分析.......................................................................................................... - 3 3 硬件电路设计与实现................................................................................................................. - 5 3.1 飞行控制电路设计.................................................................................................................. - 5 3.2 电源模块................................................................................................................................. - 6 3.3 电机驱动模块......................................................................................................................... - 6 3.4 传感器检测模块..................................................................................................................... - 7 4 系统的程序设计......................................................................................................................... - 8 5 测试与结果分析......................................................................................................................... - 9 5.1 测试设备................................................................................................................................. - 9 5.2 测试结果................................................................................................................................. - 9 6 总结........................................................................................................................................... - 10 附录 A 部分程序清单.................................................................................................................. - 11 -
其中, xd , yd , zd 为航姿参考系统测量到的加速度积分得到的位移量。
-3-
控制回路和姿态控制回路。算法结构如图 B-1 所示。
给 定 位 置
xyz

பைடு நூலகம்位置控制 姿 态 控 制 电机控制
姿态控制回路 位置控制回路 图 2-1 四旋翼飞行器控制算法结构图
飞 行 器 机 体
使用经典 PID 控制算法实现位置控制回路和姿态控制回路。PID 算法简单可靠,理论体 系完备,而且在长期的应用过程中积攒了大量的使用经验,在飞行器位置和姿态控制应用中 具有良好的控制效果和较强的鲁棒性,能提供控制量的较优解。 控制回路包含了 x, y, z 三个控制量,因此设计 3 个独立的 PID 控制器对位移进行控制。根据 PID
四旋翼自主飞行器(B 题)
摘要
系统以 R5F100LE 作为四旋翼自主飞行器控制的核心, 由电源模块、 电机调速控制模块、 传感器检测模块、飞行器控制模块等构成。飞行控制模块包括角度传感器、陀螺仪,传感器 检测模块包括红外障碍传感器、超声波测距模块、TLS1401-LF 模块,瑞萨 MCU 综合飞行器模 块和传感器检测模块的信息,通过控制 4 个直流无刷电机转速来实现飞行器的欠驱动系统飞 行。在动力学模型的基础上,将小型四旋翼飞行器实时控制算法分为两个 PID 控制回路,即 位置控制回路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确 控制,具有平均速度快、定位误差小、运行较为稳定等特点。
相关主题