附录4:英文资料及中文翻译1.英文资料Communicating with DatalData signals are transmitted over various types of telephone circuits.They travel on wire from telephone pole to telephone pole,through underground cables,from mountain top to mountain top over microwave facilities, on the ocean floor in submarine cables, and via communications satellites from continent to continent. Some type of data conversion equipment is required to change the digital machine signals to a form suitable for transmission over these facilities.b5E2RGbCAP The data machine which provides an input to the transmit section of the conversion equipment, or modulator ,can be a keyboard , printer, card reader, paper tape terminal computer or magnetic tape terminal. The output from the receive section of the converter, or demodulator, can be applied to a tape punch, printer, card punch, magnetic tape unit, computer, or visual display terminal. Typically, both the modulator and demodulator sections of the converter are combined into a two-way data transmitter-receiver, commonly called a data modem or data set.p1EanqFDPwThe typical full-duplex data transmission system including the originating data processing equipment and the interface assembly which consists of buffer and control units. The interface assembly at the transmitter accepts data at the rate determined by the operating speed of the data processor. stores the data temporarily, and regenerates it at a rate compatible with that of the data modem. At the receiving terminal the interface assembly accepts the received data, stores it, then feeds it to the data processor at the appropriate rate.DXDiTa9E3dTiming signals from the interface assembly at the transmitter are applied to the data modem to synchronize thecomputer and the data set .At the receiver, synchronization pulses are derived from the data stream to synchronize the computer.RTCrpUDGiTWhen more than one data set feeds into a computer, the capacity of the interface equipment is of major concern since it must determine the time slot allocation for each line. Various types of interface assemblies are employed, such as magnetic core memories, shift registers, and delay lines. Not all data communications terminals employ an interface between the data processor and the data modem. Without an interface, the input, data transmission, and output functions proceed simultaneously and at the same rate of speed. 5PCzVD7HxA Since data signals are rarely in suitable form for transmission over the various types of transmission facilities, a signal coding process is normally performed. Ideally, the transmission medium should have linear attenuation and delay characteristics, but this is never so in practice, and transmission impairments are always present to disturb the data signals. As a comparison, in voice communications a high degree of transmission irregularities can be tolerated. If a voice circuit has a heavy loss or is noisy, the speakers compensate automatically by increasing the intensity of their voices. If words are missed because of transmission difficulties, they are often understood anyway because of the redundant nature of speech. In contrast, there is no inherent redundancy in data signals unless purposely inserted and, therefore, transmission variations car only be compensatedfor over a very small range. In addition, data signals are sensitive to other transmission impairments which have little effect on speech.jLBHrnAILgCoding is undertaken to alleviate transmission irregularities, to increase the information capacity of the system, to enable error detection, and to provide message security. The coding process in the data transmitter simplyrearranges the applied data machine signals into some other format. At the receiving end the reverse processing is performed to recover the original machine signals.xHAQX74J0X The diagrams show the two types of information signals that are applied in digital form to a data modem. Shown in A is a binary non-return to zero signal. In B the same signal is shown in the return to zero format. The difference between A and B is that in A successive marks or spaces follow one another, whereas in B there must be a return to the space level between successive marks. The voltage values of marks and spaces are arbitrary and may be positive, negative, or both.LDAYtRyKfEOf primary concern when considering the transmission of data from one deviceto another is wiring. And of primary concern when considering the wiring is the data stream. Do we send one bit at a time, or do we group bits into larger groups and. if so, how? The transmission of binary data across a link can be accomplished either in parallel mode or serial mode. In parallel mode, multiple bits are sent with each clock pulse. In serial mode, one bit is sent with each clock pulse. While there is only one -way to send parallel data, there are two subclasses of serial transmission: synchronous and asynchronous.Zzz6ZB2LtkAsynchronous transmission is so named because the timing of a signal is unimportant. Instead, information is received and translated by agreed-upon patterns. As long as those patterns are followed, the receiving device can retrieve the information without regard to the rhythm in which it is sent. Patterns are based on grouping the bit stream into bytes. Each group, usually eight bits, is sent along the link as a unit. The sending system handles each group independently, relaying it to the link whenever ready, without regard to a timer.dvzfvkwMI1Without a synchronizing pulse, the receiver cannot use timing to predict when the next group will arrive. To alert the receiver to the arrival of a new group, therefore, an extra bit is added to the beginning of each byte. This bit, usually a 0, is called the start bit. To let the receiver know that the byte is finished, one or more additional bits are appended to the end of the byte. These bits, usually 1s, are called stop bits. By this method, each byte is increased in size to at least 10 bits, of which 8 are information and 2 or more are signals to the receiver. Inaddition, the transmission of each byte may then be followed by a gap of varying duration. This gap can be represented either by an idle channel or by a stream of additional stop bits.rqyn14ZNXIThe start and stop bits and the gap alert the receiver to the beginning and end of each byte and allow it to synchronize with the data stream. This mechanism is called asynchronous because, at the byte level, sender and receiver do not have to be synchronized. But within each byte, the receiver must still be synchronized with the incoming bit stream. That is, some synchronization is required, but only for the duration of a single byte. The receiving device resynchronizes at the onset of each new byte. When the receiver detects a start bit, it sets a timer and begins counting bits as they come in. After n bits the receiver looks for a stop bit. As soon as it detects the stop bit, it ignores any received pulses until it detects the next start bit.EmxvxOtOcoThe addition of stop and start bits and the insertion of gapsinto the bit stream make asynchronous transmission slower than forms of transmission that can operate without the addition of control information. But it is cheap and effective, two advantages that make it an attractive choice for situations like low-speed communication. For example, the connection of a terminal to a computer is a na1ural application for asynchronous transmission. A user type’s onlyone character at a time, types extremely slowly in data processing terms, and leaves unpredictable gaps of time between each character.SixE2yXPq5In synchronous transmission, the bit stream is combined into longer"frames", which may contain multiple bytes. Each byte, however, is introduced onto the transmission link without a gap between it and the next one. It is left to the receiver to separate the bit stream into bytes for decoding purposes. In other words, data are transmitted as an unbroken string of 1s and 0s, and the receiver separates that string into the bytes, or characters, it needs to reconstruct the information.6ewMyirQFLIt gives a schematic illustration of synchronous transmission. We have drawn in the divisions between bytes. In reality, those divisions do not exist。