AA 1DCB B 1C 1图空间向量与立体几何说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为( )A .60°B .90°C .105°D .75°2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( )A .1715 B .21 C .178 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A .1030 B .21 C .1530 D .1015 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD和SC 之间的距离( )A .515 B .55 C .552 D .105 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82C .a 423 D .a 22 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( )A .63 B .33 C .332 D .23 图图7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( )A .621B .338 C .60210D .302108.在直三棱柱111C B A ABC -中,底面是等腰直角三角形,90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面AB D 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值( )A .32B .37C .23 D .73 9.正三棱柱111C B A ABC -的底面边长为3,侧棱3231=AA ,D 是C B 延长线上一点,且BC BD =,则二面角B AD B --1的大小 ( )A .3πB .6π C .65πD .32π10.正四棱柱1111D C B A ABCD -中,底面边长为22,侧棱长为4,E ,F 分别为棱AB ,CD 的中点,G BD EF =⋂.则三棱锥11EFD B -的体积V( )A .66B .3316 C .316D .16二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.在正方体1111ABCD A B C D -中,E 为11A B 的中点,则异面直线1D E 和1BC 间的距离 .12. 在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别是11A B 、CD 的中点,求点B 到截面1AEC F 的距离 . 13.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 、F 分别是B 1C 1和C 1D 1的中点,点A 1到平面D B EF 的距离 .14.已知棱长为1的正方体AB CD -A 1B 1C 1D 1中,E 是A 1B 1的中点,求直线A E 与平面AB C 1D 1所成角的正弦值 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知棱长为1的正方体AB CD -A 1B 1C 1D 1,求平面A 1B C 1与平面AB CD 所成的二面角的大小16.(12分)已知棱长为1的正方体AB CD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.17.(12分)在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且P A⊥底面ABCD,PD与底面成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的余弦值.18.(12分)已知棱长为1的正方体A C1,E、F分别是B1C1、C1D的中点.(1)求证:E、F、D、B共面;(2)求点A1到平面的B DEF的距离;(3)求直线A1D与平面B DEF所成的角.19.(14分)已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求:(Ⅰ)D1E与平面BC1D所成角的大小;(Ⅱ)二面角D-BC1-C的大小;(Ⅲ)异面直线B1D1与BC1之间的距离.20.(14分)如图5:正方体AB CD-A1B1C1D1,过线段B D1上一点P(P 平面A C B1)作垂直于D1B 的平面分别交过D1的三条棱于E、F、G.(1)求证:平面EFG∥平面A C B1,并判断三角形类型;(2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.参考答案一、1.B ;2.A ;3.A ;4.C ;分析:建立如图所示的直角坐标系,则A ,B ,(C ,(D ,(0,0,2)S .(2,DB ∴=,2(CS =.令向量(,,1)n x y =,且,n DB n CS ⊥⊥,则00n DB n CS ⎧⋅=⎪⎨⋅=⎪⎩,(,,1)0(,,1)2)0x y x y ⎧⋅=⎪∴⎨⋅=⎪⎩,00x y x y +=⎧⎪⎨-+⎪⎩, x y ⎧=⎪∴⎨=⎪⎩(2,n ∴=-. ∴异面直线BD 和SC 之间的距离为:OC n d n⋅===5.A ;分析:11ABB A 为正方形,11A B AB ∴⊥,又平面1AB D ⊥平面11ABB A ,1A B ∴⊥面1AB D ,1A B ∴是平面1AB D 的一个法向量,设点C 到平面1AB D 的距离为d ,则11AC A B d A B⋅==1()AC A A AB ⋅+1)AC A A AC AB⋅+⋅=. 6.B ;分析:建立如图所示的直角坐标系,设平面11A C D 的一个法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即(,,1)(1,0,1)0(,,1)(0,1,1)0x y x y ⋅=⎧⎨⋅=⎩11x y =-⎧⇒⎨=-⎩, (1,1,1)n ∴=--,∴平面1AB C 与平面11A C D 间的距离AD n d n⋅=222(_1,0,0)(1,1,1)3.(1)(1)1⋅--==-+-+ 7.D ;()()().222,0,0,0,,0,,0,0.0,0,.212,0,,422OP ABC OA OC AB BC OA OB OA OP OB OP O OP z O xyz AB a A a B a C a OP h P h D PC OD a h PA a ⊥==∴⊥⊥⊥-⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫∴=-= ⎪ ⎪⎝⎭ 平面,,,,,以为原点,射线为非负轴,建立空间直角坐标系如图,设,则设,则 为的中点,又Ⅰ,0,1...2h OD PA OD PA OD PAB ⎛⎫- ⎪ ⎪⎝⎭∴=-∴∴, 平面∥∥()2,7,2214,0,,4411,1,,7210cos ,.210sin cos ,,210arcsin.PA a h a OD a a PBC n OD n OD n OD nOD PBC OD n OD PBC θθ=∴=⎛⎫∴=- ⎪ ⎪⎝⎭⎛⎫=- ⎪ ⎪⎝⎭⋅∴〈〉==⋅=〈〉=∴ 可求得平面的法向量 设与平面所成的角为,则 与平面所成的角为Ⅱ8.B ;解 以C 为坐标原点,C A 所在直线为x 轴,C B 所在直线为y 轴,1CC 所在直线为z 轴,建立直角坐标系, 设a CB CA ==,x ABCDA 1B 1C 1D 1yzE 图z yxPODCBAA 1B 1C 1D z则 )(0,0,a A ,)(0,,0a B ,)(2,0,1a A ,)(1,0,0D ∴ )(1,2,2a a E , )(31,3,3a a G , )(32,6,6a a GE =,)(1,,0a BD -=, ∵ 点E 在平面AB D 上的射影是ABD ∆的重心G ,∴ ⊥平面AB D , ∴ 0=⋅,解得 2=a . ∴ )(32,31,31=GE , )(2,2,21-=, ∵ ⊥平面AB D , ∴ 为平面AB D 的一个法向量.由 32323634||||,cos 111=⋅=⋅>=<BA GE BA ∴ B A 1与平面AB D 所成的角的余弦值为37. 评析 因规定直线与平面所成角]20[πθ,∈,两向量所成角]0[πα,∈,所以用此法向量求出的线面角应满足|2|απθ-=.9.A ;取B C 的中点O ,连A O .由题意 平面⊥ABC 平面11B BCC ,BC AO ⊥, ∴⊥AO 平面11B BCC ,以O 为原点,建立如图6所示空间直角坐标系,则 )(323,0,0A ,)(0,0,23B ,)(0,0,29D ,)(0,323,231B , ∴ )(323,0,29-=AD , )(0,323,31-=B , )(0,323,01=BB , 由题意 ⊥1平面AB D , ∴ )(0,323,01=BB 为平面AB D 的法向量. 设 平面D AB 1的法向量为 ),,(2z y x n =,则 ⎪⎩⎪⎨⎧⊥⊥B n n 122, ∴ ⎪⎩⎪⎨⎧=⋅=⋅00122B n n , ∴ ⎪⎩⎪⎨⎧=-=-03233032329y x z x , 即 ⎪⎩⎪⎨⎧==xz y x 3323. ∴ 不妨设 )23,1,23(2=n ,由 212323323,cos 212121=⨯=>=<n BB , 得 60,21>=<n BB . 故所求二面角B AD B --1的大小为60.评析:(1)用法向量的方法处理二面角的问题时,将传统求二面角问题时的三步曲:“找——证——求”直接简化成了一步曲:“计算”,这表面似乎谈化了学生的空间想象能力,但实质不然,向量法对学生的空间想象能力要求更高,也更加注重对学生创新能力的培养,体现了教育改革的精神.(2)此法在处理二面角问题时,可能会遇到二面角的具体大小问题,如本题中若取)23,1,23(2---=n 时,会算得21,cos 21->=<n BB ,从而所求二面角为 120,但依题意只为60.因为二面角的大小有时为锐角、直角,有时也为钝角.所以在计算之前不妨先依题意判断一下所求二面角的大小,然后根据计算取“相等角”或取“补角”.10.C ;解 以D 为坐标原点,建立如图10所示的直角坐标系, 则 )4,22,22(1B , )4,0,0(1D ,)0,2,22(E ,)0,22,2(F ,∴ )4,2,22(1-=D ,)4,22,2(1-=D ,)0,22,22(11=B D , 图10 ∴1312262624||||,cos 111111=⋅=⋅<F D E D D D , ∴135,sin 11>=<D D , 所以 5135262621,sin ||||211=⨯⨯⨯>=<⋅⋅=∆S EF D , 设 平面EF D 1的方程为:0=+++D Cz By x ,将点F E D ,,1代入得⎪⎩⎪⎨⎧=++=++=+0222022204D B D B D C , ∴ ⎪⎪⎩⎪⎪⎨⎧-===232431D C B , ∴ 平面EF D 1的方程为:023243=-++z y x ,其法向量为 BA DCD 1A 1B 1C 1zy xEFG)243,1,1(=n , ∴点1B 到平面EF D 1的距离516||11==n d , ∴ 31651653131111=⨯⨯=⋅⋅=∆-d S V EFD EFD B 即为所求. 评析 (1)在求点到平面的距离时,有时也可直接利用点到平面的距离公式222000||CB A D Cz By Ax d +++++=计算得到.(2) 法向量在距离方面除应用于点到平面的距离、多面体的体积外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等. 二、 11.分析:设正方体棱长为2,以1D 为原点,建立如图所示的空间直角坐标系,则1(2,1,0)D E =,1(2,0,2)C B =,设1D E 和1BC 公垂线段上的向量为(1,,)n λμ=,则110n D E n C B ⎧⋅=⎪⎨⋅=⎪⎩,即20220λμ+=⎧⎨+=⎩,21λμ=-⎧∴⎨=-⎩,(1,2,1)n ∴=--,又11(0,2,0)D C =,116D C nn ⋅∴=异面直线1D E 和1BC . 12.36分析:以D 为原点,建立如图所示的空间直角坐标系. 则11(1,0,0),(0,,0),(1,,1)22A F E .1(0,,1)2AE ∴=,1(1,,0)2AF =-;设面1AEC F 的法向量为(1,,)n λμ=, 则有:0,0n AE n AF ⋅=⋅=,102211102λμλμλ⎧+=⎪=⎧⎪∴⇒⎨⎨=-⎩⎪-+=⎪⎩,(1,2,1)n ∴=-,又(0,1,0)AB =,所以点B 到截面1AEC F的距离为AB n AB n⋅⋅==13.1;解:如图建立空间直角坐标系,=(1,1,0) ,=(0,21,1), 1DA =(1,0,1)设平面D B EF 的法向量为n =(x ,y ,z ),则有:0=⋅ 即x +y =00=⋅21y +z =0 令x =1, y =-1, z=21, 取=(1,-1,21),则A 1D B EF 的距离1==h 14.510解:如图建立空间直角坐标系,AB =(0,1,0),1AD=(-1,0,1),=(0,21,1) 设平面AB C 1D 1的法向量为=(x ,y ,z ),由 0=⋅AB n 可解得n =(1,0,1)01=⋅AD设直线A E 与平面AB C 1D 1所成的角为θ,则510sin ==θ, 三、15. 解:如图建立空间直角坐标系,11C A =(-1,1,0),A 1=(0,1,-1) 设1n 、2n 分别是平面A 1B C 1与平面AB CD 的法向量, 由 011=⋅B A n 可解得1=(1,1,1)0111=⋅C A n易知2n =(0,0,1), 所以,=33所以平面A 1B C 1与平面AB CD 所成的二面角大小为a rccos33或 π-a rccos 33. 注:用法向量的夹角求二面角时应注意:平面的法向量有两个相反的方向,取的方向不同求出来的角度当然就不同,所以最后还应该根据这个二面角的实际形态确定其大小.16.证明:如图建立空间直角坐标系,则11C A =(-1,1,0),B 1=(-1,0,-1) A 1=(1,0,1), B 1=(0,-1,-1)设111C A A λ=,A A 11μ=,B B 11ν=(λ、μ、νR ∈,且均不为0)设1n 、2n 分别是平面A 1EF 与平面B 1MC 的法向量,由 011=⋅E A n 可得 0111=⋅C A n λ 即 0111=⋅C A n011=⋅A n 011=⋅A n μ 011=⋅A n解得:1n =(1,1,-1)由 012=⋅B n 可得 012=⋅A B n ν 即 012=⋅B n012=⋅B n 012=⋅B n 012=⋅B n解得2n =(-1,1,-1),所以1n =-2n , 1n ∥2n , 所以平面A 1EF ∥平面B 1MC .注:如果求证的是两个平面垂直,也可以求出两个平面的法向量后,利用1n ⊥2n 021=⋅⇔n n 来证明.17.(1)证明:∵P A ⊥平面ABCD ,∴P A ⊥AB ,又AB ⊥AD .∴AB ⊥平面P AD .又∵AE ⊥PD ,∴PD ⊥平面ABE ,故BE ⊥PD .(2)解:以A 为原点,AB 、AD 、AP 所在直线为坐标轴,建立空间直角坐标系,则点C 、D 的坐标分别为(a ,a ,0),(0,2a ,0).∵P A ⊥平面ABCD ,∠PDA 是PD 与底面ABCD 所成的角,∴∠PDA =30°.于是,在Rt △AED 中,由AD =2a ,得AE =a .过E 作EF ⊥AD ,垂足为F ,在Rt △AFE 中,由AE =a ,∠EAF =60°,得AF =2a,EF =23a ,∴E (0,23,21a a )于是,CD a a AE},23,21,0{=={-a ,a ,0}设AE 与CD 的夹角为θ,则由cos θ||||CD AE ⋅420)()23()21(002321)(0222222=++-⋅++⋅+⋅+-⋅a a a a a a a a AE 与CD 所成角的余弦值为42. 评述:第(2)小题中,以向量为工具,利用空间向量坐标及数量积,求两异面直线所成的角是立体几何中的常见问题和处理手段. 18.解:(1)略.(2)如图,建立空间直角坐标系D —xyz , 则知B (1,1,0),).1,21,0(),1,1,21(F E 设.),,(的法向量是平面BDEF z y x = )1,21,0(),0,1,1(,,==⊥⊥由得⎪⎩⎪⎨⎧=+=⋅=+=⋅0210z y y x DB n 则⎪⎩⎪⎨⎧-=-=.21y z y x 令)21,1,1(,1--==y 得.设点A 1在平面B DFE 上的射影为H ,连结A 1D ,知A 1D 是平面B DFE 的斜线段..23)21)(1(10)1)(1(),1,0,1(1=--+⨯+--=⋅∴--=A.1222,cos ||||.2223223||||,cos ,23)21(1)1(||,2)1()1(||111111112222221=⨯>=<⨯=∴=⨯=⨯<∴=-++-==-++-=H A D A D A H A n D A A A O A 又 即点A 1到平面B DFE 的距离为1.(3)由(2)知,A 1H=1,又A 1D=2,则△A 1HD 为等腰直角三角形, 4511=∠=∠H DA DH A.45,,,11111 =∠∴∠∴⊥DH A BDFE D A DH A BDFE D A HD BDFE H A 所成的角与平面就是直线上的射影在平面是平面19.解:建立坐标系如图,则()2,0,0A 、()2,2,0B ,(0,2,0C ,()12,0,2A ,()12,2,2B ,()10,0,2D ,()2,1,0E ,(1A C =-()12,1,2D E =-,()0,2,0AB =,()10,0,2BB =.(Ⅰ)不难证明1A C 为平面BC 1D 的法向量, ∵ 1111113cos ,AC D E AC D E AC D E ==∴D 1E 与平面BC 1D 所成的角的大小为 2π-(即.(Ⅱ)1A C 、AB 分别为平面BC 1D 、BC 1C 的法向量, ∵ 1113cos ,3AC AB AC AB ACAB ==,∴ 二面角D -BC 1-C 的大小为.(Ⅲ)∵ B 1D 1∥平面BC 1D ,∴ B 1D 1与BC 1之间的距离为1112AC BB d AC ==.20.(证明(1)用纯粹的几何方法要辗转证明EF ∥A C ,EG ∥B 1C ,FG ∥AB 1来证明,而我们借用向量法使问题代数化,运算简洁,思路简单明了.)(1)分析:要证平面EFG 平面A C B 1,由题设知只要证B D 1垂直平面A C B 1即可.证明:以D 为坐标原点,建立空间直角坐标系,如图5,不妨设正方体棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),D 1(0,0,a ),B 1(a ,a ,a ),E (x E ,0,a ),F (0,y F ,a ),G (0,0,z G ).∴→1BD =(-a ,-a ,a ),→1AB =(0,a ,a ),→EF (-x E ,y F ,0),→AC =(-a ,a ,0),→C B 1=(-a ,0,-a ), ∵→1BD ·1→AB =(-a ,-a ,a )·(0,a ,a )=0, ∴→1BD ⊥→1AB , 同理 →1BD ⊥→AC , 而→1AB 与→AC不共线且相交于点A ,∴→1BD ⊥平面A C B 1,又已知→1BD ⊥平面EFG , ∴ 平面EFG ∥平面A C B 1;又因为→1BD ⊥平面EFG ,所以 →1BD ⊥→EF , 则→1BD ·→EF =0,即 (-a ,-a ,a )·(-x E ,y F ,0)=0, 化简得 x E -y F =0;同理 x E -z G =0, y F -z G =0, 易得→EF=→EF=→FG,∴ △EFG 为正三角形.(2)解:因为△EFG 是正三角形,显然当△EFG 与△A 1C 1D 重合时,△EFG 的边最长,其面积也最大,此时,EF =A 1C 1=2·a ,∴EFG S ∆= D C A S 11∆=21→→D A C A 111··sin600 =21(2·a )2·23=23·a 2 . 此时EF 与B 1C 的距离即为A 1C 1与B 1C 的距离,由于两异面直线所在平面平行,所求距离转化为求点B 1到平面 A 1C 1D 的距离,记A 1C 1与B 1D 1交于点O 1,作O 1H ∥D 1B 并交BB 1于点H ,则O 1H⊥平面A 1C 1D ,垂足为O 1,则O 1(2a ,2a ,a ),H(a ,a ,2a),而→H O 1作为平面A 1C 1D 的法向量,所以异面直线EF 与B 1C 的距离设为d 是d = →→→HO H O B O 1111·=43)44(222a a a +=33·a . (证明(2)时一般要找到求这两平面距离的两点,如图5*,而这两点为K 与J ,在立体图形中较难确定,且较难想到通过作辅助线DO 1,O B 1来得到,加上在如此复杂的空间图形中容易思维混乱,但只要借助平面法向量求线段的射影长度的思想,结合题设,使思路清晰明了,最终使问题的解决明朗化;把握这种思想,不管是空间线线距离,线面距离,面面距离问题,一般我们都能转化成点线或点面距离,再借助平面法向量很好地解决了.)。