当前位置:文档之家› 统计热力学课程论文

统计热力学课程论文

统计热力学 1 统计热力学 XX大学 化学工程学院,

摘 要:统计热力学应用统计力学方法研究平衡系统的热力学性质。统计热力学认为物质

的宏观性质是大量微观粒子运动量的统计平均值的体现。统计热力学从系统内部粒子的微观性质及其结构的数据出发,在统计原理的基础上,运用力学和统计规律推求大量粒子运动的统计平均结果,从而得到宏观性质。统计力学把热运动的宏观现象和微观机制联系起来,给经典热力学的唯象理论提供了数学证明。随着计算机和量子力学的发展,统计热力学会在工程上有更为广泛的应用。

关键词:统计热力学 微观 经典热力学

Statistical Thermodynamic Abstract:Statistical thermodynamic applies statistical mechanics method to study the thermodynamic properties of balance system. On the basis of statistical principle, statistical thermodynamic starts from internal system of the micro particle properties and structure of data in view of statistics to derive a lot of particle motion statistical average results, thus obtains the macroscopic properties. Statistical mechanic makes the thermal movement of the macroscopic phenomena and microscopic mechanism connected, providing a mathematical proof to the classical thermodynamic of phenomenological theory. For the development of computer and quantum mechanics, statistical thermodynamic will be more widely used in engineering.

Key words:statistical thermodynamic microscopic classical thermodynamics

1 序论 热力学是以热力学三定律为基础,以大量分子的集合体作为研究对象,利用热力学数据,通过严密的逻辑推理,进而讨论平衡系统的各宏观性质之间的相互关系及其变化规律,揭示变化过程的方向和限度[1-3]。从热力学所得到的结论对宏观平衡系统具有高度的普适性和可靠性,但是,热力学处理问题时没有考虑物质的微观结构,而任何物质的各种宏观性质都是微观粒子运动的客观反映[4]。人们希望从物质的微观结构出发来了解其各种宏观性质,这是经典热力学所不能满足的,而统计热力学在这点上弥补了经典热力学的不足[5-6]。

统计热力学从微观粒子所遵循的量子规律出发,研究的对象是大量分子的集合体,用统计的方法推断出宏观物质的各种性质之间的联系,阐明热力学定律的微观含义,揭示热力学函数的微观属性。统计热力学可以根据统计单元的力学性质(如速率,动量,位置,振动等),用统计的方法来推求系统的宏观热力学性质(如压力,热容,熵等)[7-8]。

2 统计热力学

2.1 统计力学的发展历程 统计力学产生于经典分子运动论。麦克斯韦(James Clerk Maxwell,1831—1879) 通常被认为是统计力学理论的奠基人。他率先开始寻找热力学系统的微观处理方法(表征为统计力学特性)和唯象处理方法(表征为热力学特性)之间的联系。1860年麦克斯韦题为《对气体运动论的解释》的论文,第一次提出了统计力学的基本思想。1867年麦克斯韦引入了 统计热力学 2 “统计力学”这个术语[9]。1898年玻耳兹曼(Ludwig Edward Boltzmann 1844--1906)完成的《气体理论讲义》,为20世纪近代统计力学的发展奠定了的基础[10]。1902年吉布斯(Josiah Willard Gibbs1839—1903)发表《统计力学》一书,建立了“统计系统”(Statistical Ensemble)概念,提出了一种全新的研究视点,给统计力学的研究带开辟了一个新的天地[10]。1924年量子力学的出现,所用的统计方法也随之有了新的发展,产生了类似费米一狄拉克统计等的新统计方法[11-14]。随着时间的流逝,麦克斯韦所开创的事业得到了迅速的发展。近几年计算机科学的快速发展极大的促进了统计力学的发展,出现的很多新的统计方法,完善了统计热力学知识体系[15]。统计热力学是统计力学的一个重要分支,近些年随着统计力学的发展也得到了很大发展。

2.2 统计热力学取得的成果 2.2.1 用统计热力学的观点推导气体的热力学性质 对单原子气体,双原子气体,线性多原子气体,以及非线性多原子气体,在分析其平动自由度,转动自由度,振动自由度的基础上,研究其配分函数,用统计热力学的理论推导得出的热力学数据,与经典热力学的数据一致,并且更具实际指导意义[16]。

2.2.2 用统计热力学的观点解释原子晶体的热容 统计热力学对热容实验结果的解释是它的重大成就之一[17]。由实验得知,所有原子晶体(如C、Ag),在温度较高时,其Cv→3R(约25J·K·mol-1),当温度趋于绝对零度时Cv→0,低温时Cv与T3近似地成正比。以气体分子运动理论为基础的热容理论对此可作出解释:在晶体点阵上粒子(原子)仅有振动自由度而无平动和转动自由度,属三维振动,各维振动分别有一动能自由度和一势能自由度,按能量均分原理,每一自由度分配有½RT的能量,故Cv=3R。

2.2.3 统计热力学估算理想气体反应的平衡常数 因化学平衡等温式:−∆Grθ(T)=RTlnKpθ(T)中,反应的−∆Gr

θ(T)可由配分函数求得,

故应用统计力学方法可自光谱数据估算化学反应的平衡常数[18-19]。

2.2.4 统计热力学对热力学三定律的阐释 统计热力学是从系统内部粒子的微观性质及其结构的数据出发。以粒子普遍遵循的力学定律为理论基础;用统计学的方法直接推求大量粒子运动的统计平均结果,以得出平衡系统各种宏观性质的具体数值。统计热力学对经典热力学三定律给出了统计角度的全新解释,揭示了它的微观本质,给了热力学三定律以微观的视野。并且,统计热力学近年应用于计算机建模,对经典的热力学方程算法进行了优化,给出了很好的结果,精度和准确性都大大提高[20-21]。

热力学第一定律统计角度的解释:dU=∑Nidεi+∑εidNi。从微观的角度来看,系统热力学能变化来源于两个方面:第一方面是∑Nidεi,该项表示各能级上的粒子数不变,而能级改变(升高或降低)所引起的系统热力学能的变化;第二方面∑εidNi,该项表示各能级不变,而各能级上的粒子数发生变化所引起的系统热力学能的变化[22]。

热力学第二定律统计角度的解释:S=KlnΩ。其中K是系数,Ω离域子系统微观状态函数,Ω=(T,V)。熵增原理可以表示为dΩ≧0。摘增原理反映了自然界过程总是由概率小的状态自发地朝概率大的状态过渡,达到指定条件下概率最大的状态时为止这一事实[23]。

热力学第三定律统计角度的解释: 由定律二得,嫡取决于体系中最概然分布的微观状态数: S=KlnΩ。随着温度降低,体系中可实现的能级数减少,Ω随之减少,而当温度趋 统计热力学 3 于绝对零度时,若为完整晶体,则其排列方式仅有一种,Ω=1,故S=0, 即完整晶体在绝对零度时嫡值为零[24]。

2.3 统计热力学发展现状 用统计热力学方法,在计算机上建立合适的模型,便可以由“微观性质”快速,准确的得到一些“宏观性质”。 随着人们对分子间作用力的认识不断深人和基于统计热力学的分子理论的日益完善,统计热力学处理的对象早已不在局限于像惰性气体或者氢这样的简单分子,而是涉及电解质溶液和离子液体、长链高分子溶液、胶体溶液、生物大分子溶液、聚电解质溶液、亲水亲油分子流体、多分散体系以及多孔材料中的受限空间流体等上述的所有复杂流体。研究这些复杂流体的物性和相行为,宏观热力学方法已显得力不从心。而建立在统计热力学和分子科学基础之上,又有实验数据支撑的分子热力学方法已成为研究复杂流体结构和热力学性质的有力工具。人们仅从流体的微观分子位能函数出发,运用统计力学方法,即可预测流体的热力学性质和相行为。随着近年来高速电子计算机的普及,构筑于统计热力学基础之上的模拟技术已在化学工程各个研究领域得到广泛的应用[25-26]。

近年来国内外学者在电解质溶液[27]、高分子溶液[28]和生物大分子[29]溶液领域的分子热力学研究成果,取得了三个有代表性的高分子溶液[30-31]模型。第一个为经典的格子模型:Flory-Huggins方程。第二个为胞腔模型: Prigogine-Flory-Patterson方程。第三个为统计缔合流体理论:SAFT方程。其中SAFT方程自上世纪90年代诞生以来,由于它应用广泛,不但适用于高分子体系,也适用于小分子体系和长链有机物体系,还特别适用于工程上难以处理的极性和缔合体系。目前SAFT方程已成为热力学领域最重要的方程之一。国内在统计热力学的工程应用上发展比较迅速,取得了一系列成果,在以上三方面也进展迅速。比较有代表性的有胡文兵[32]等基于经典的高分子溶液统计热力学理论及Flory的半柔顺链的统计理论提出了可结晶高分子溶液的热力学理论。于成峰液体内聚能的统计热力学研究[33]柴志宽高分子溶液及混合物的统计热力学研究得到了Flory状态方程理论sanchez格子

流体理论所给出的公式[34]等。

2.4 统计热力学的意义 经典热力学仅限于从现象上阐明物质的温度、压力、内能等宏观性质之间的关系[35],而统计热力学通过配分函数把构成物质的分子排列以及分子间作用力与物质的宏观性质联系起来,以某种合理的方式得知多粒子系统的宏观行为或平均行为。统计热力学方法在统计原理的基础上,运用力学规律对粒子的微观量求统计平均值,从而得到宏观性质。从而将物质的微观性质(粒子的力学性质)与宏观性质(热力学性质、宏观反应的速率、方向和限度问题)联系起来,揭示了物质运动的本质。所以统计热力学弥补经典热力学只描述大量粒子总体表现出来的宏观性质及平衡系统中各宏观性质之间的关系,不涉及系统内部粒子的微观性质的缺陷[36]。统计热力学成为联系物质系统的微观性质与宏观性质的桥梁,也是经典热力学的微观解释和扩展[37]。同时,统计热力学可以通过机器实验获取异常条件下(如高温、高压及临界点附近)的数据,又可以对数学模型进行检验,并对研究对象微观结构进行解释,扩大了热力学的应用范围[38-40]。

相关主题