稳定的水溶性Fe3O4纳米粒子的制备及其表征(作者:___________单位: ___________邮编: ___________)作者:吴利清,张熙之,方芳,王怡红,张宇,顾宁【摘要】目的:制备稳定的水溶性Fe3O4纳米粒子(PMAT Fe3O4)磁共振成像(MRI)造影剂,并对合成的粒子进行表征。
方法:利用高分子聚1十四碳烯马来酸酐(PMAT)修饰油溶性Fe3O4纳米粒子表面,使粒子表面富含亲水性羧基基团,使粒子能够稳定存在于水相中,并用透射电镜(TEM)、动态光散射(DLS)、振动样品磁强计(VSM)、傅立叶红外吸收光谱(FT IR)和MRI等方法进行表征。
结果:(1) TEM 分析显示,PMAT Fe3O4粒子直径约为10 nm,DLS测定其水动力学平均直径约为80 nm;(2) PMAT Fe3O4粒子能稳定分散于去离子水、PBS、Tris、MES等缓冲液中,不发生团聚;(3) VSM、MRI等分析手段显示,PMAT Fe3O4的饱和磁化强度Ms≈14.0 emu·g-1,弛豫率r2=367.79 mM-1s-1。
结论:PMAT Fe3O4具有良好的水溶性、磁学性能和较高的r2值,有望发展成为一种性能优异的MRI造影剂。
【关键词】 Fe3O4纳米粒子; 表面修饰; 聚合物; 弛豫率[Abstract] Objective: To synthesize stable andwater soluble PMAT Fe3O4 nanoparticles(NPs) as MRI contrast agent and characterize it. Methods: Poly maleic anhydride alt1tetradecene(PMAT) was utilized to modify the surface of oil soluble NPs, and the obtained PMAT Fe3O4 NPs were characterized by TEM, DLS, FT IR, VSM and MRI. Results: (1) TEM and DLS studies showed that the PMAT Fe3O4 NPs have a magnetic core size of about 10 nm and a hydrodynamic diameter of about 80 nm.(2) PMAT Fe3O4 could keep stable in water and familiar buffers, such as MES, PBS and Tris without aggregation.(3) VSM measurements showed that the saturation magnetization(Ms) was about 14.0 emu·g-1, the relaxivity value(r2) of PMAT Fe3O4 was 367.79 mM-1s-1. Conclusion: The obtained PMAT Fe3O4 NPs possess outstanding water solubility, good magnetic properties, and high r2 value, which are therefore expected to become an excellent MRI contrast agent.[Key words] Fe3O4 nanoparticles; surface modification; polymer; relaxivity磁性纳米粒子(NPs)在生物技术和生物制药等领域已显示出良好的应用前景[1]。
氧化铁纳米粒子由于具有独特的磁学性质和良好的生物相容性,研究其作为造影剂在磁共振成像(MRI)技术方面的应用,已成为发展最为迅速和最为重要的课题之一。
其中,化学制备具有稳定水溶性和高弛豫率(r)的磁性氧化铁纳米粒子是一个重要的研究方向。
r的大小是考察氧化铁纳米粒子是否具有良好造影能力的重要参数,它分为r1和r2两种,分别代表了单位浓度粒子缩短体系内质子弛豫时间T1和T2的效率[2-4]。
本实验利用高分子聚1十四碳烯马来酸酐(poly maleic anhydride alt1tetradecene, PMAT),对油溶性的油酸包覆的Fe3O4纳米粒子(oleic Fe3O4)进行表面修饰,使其能够稳定分散于水相中,获得水溶性Fe3O4纳米粒子(PMAT Fe3O4),研究表明,该种纳米粒子具有较高弛豫率r2值,能够作为良好的MRI造影剂。
1 材料与方法1.1 材料PMAT(Sigma Aldrich)、透析袋(50 KDa)、oleic Fe3O4(参照文献[5]报道,本实验室制备)。
1.2 主要试剂氯仿(上海市四赫化工有限公司),碳酸盐缓冲液(pH 10.8)、MES 缓冲液(pH 6.0)、PBS缓冲液(pH 7.4)、Tris缓冲液(pH 8.0)(缓冲液均为本实验室配制),正己烷(上海市实德化学有限公司),去离子水。
1.3 实验方法1.3.1 PMAT Fe3O4纳米粒子制备称取0.05 g oleic Fe3O4固体粉末和0.2 g PMAT,分别溶于10 ml氯仿中,超声5 min后,室温下于50 ml烧瓶中混合搅拌反应4 h。
旋转蒸发除去溶剂氯仿,得到黑色固体。
在氮气保护下,将黑色固体加入30 ml碳酸盐缓冲液,50 ℃下在100 ml三颈瓶中剧烈搅拌反应3 h,得到稳定的黑色水溶性PMAT Fe3O4纳米粒子。
1.3.2 提纯将以上PMAT Fe3O4纳米粒子用220 nm滤膜过滤后,置于磁场下磁分离,待分层明显后,取下部磁性物质重新分散于10 ml去离子水中,用去离子水透析24 h,透析过程中换去离子水3次,得到纯净的分散于水中的PMAT Fe3O4纳米粒子。
1.3.3 表征运用多种分析手段对所制备的粒子进行表征,研究其作为造影剂的性能。
1.3.3.1 Fe浓度测定使用邻二氮菲分光光度法[6]对样品的Fe 浓度进行测定。
制备了3个浓度梯度的样品待测,其中Fe含量比为2 ∶1 ∶ 0,测得Fe浓度为1.7 mg·ml-1。
1.3.3.2 透射电镜(TEM)分析将样品用去离子水稀释后,滴1滴于TEM专用铜网上,40 ℃下真空烘干8 h,待测。
仪器型号为JEM200CX。
1.3.3.3 动态光散射(DLS)分析将样品用去离子水稀释至Fe浓度为0.5 mg·ml-1后,室温下测定其水动力学粒度分布。
仪器型号为Malvern Zeta Size 3000HS。
1.3.3.4 傅立叶红外吸收光谱(FT IR)分析取 1 ml制备的PMAT Fe3O4溶液,以6 mol·L-1盐酸调至等电点,析出的黑色固体用去离子水洗涤3次,40 ℃真空干燥,得到黑色固体粉末,待测。
仪器型号AVATAR 360FTIR。
1.3.3.5 振动样品磁强计(VSM)分析制样同FT IR。
仪器型号为Lakeshore 7400。
1.3.3.6 MRI 准确配制Fe浓度为5、2.5、1.25、0.625、0.312 5、0.156 25 μg·ml-1 PMAT Fe3O4溶液,各取1.4 ml液体于1.5 ml离心管中,待测。
室温下,MRI实验磁场强度为7.0 T,自旋回波序列,脉冲重复间隔时间TR为2 500 ms,回波时间TE分别为11.0、22.0、33.0、44.0、55.0、66.0、77.0、88.0、99.0、110.0、121.0、132.0、143.0、154.0、165.0和176.0 ms。
仪器型号为Bruker Pharma Scan,7.0 T,孔径为16 cm,最大梯度强度为300 mT·m-1。
2 结果2.1 粒度分析使用PMAT修饰后,PMAT Fe3O4可以稳定存在于水环境中,包括MES、PBS、Tris等缓冲液体系中。
在4 ℃条件下,粒子可以长时间保存不发生沉积。
TEM分析显示,PMAT Fe3O4分散性良好(图1),这主要是由于粒子间的静电排斥作用和空间位阻作用的结果,但是小的聚集体仍然存在。
PMAT Fe3O4纳米粒子的直径约为10 nm,与油溶性oleic Fe3O4相比,粒度并无明显改变。
DLS分析显示,在水环境中,PMAT Fe3O4的水动力学平均直径约为80 nm(图2),明显高于TEM测得的尺寸,这可能有两个原因:(1) DLS统计的是纳米粒子在水环境中的整体尺寸,包括表面有机物壳层和水化层对粒径大小的贡献,而修饰在粒子表面的有机物分子包裹层并不能在TEM图中显示出来;(2) 有几个Fe3O4纳米粒子被PMAT包裹成一个整体,形成一个相对较大的PMAT Fe3O4粒子,影响了粒子的整体尺寸分布。
a. oleic Fe3O4; b. PMAT Fe3O42.2 FT IR分析通过对粒子红外图谱的分析,可以获得粒子的化学结构信息,见图3。
a和b曲线中,2 850 cm-1和2 930 cm-1的吸收峰表明粒子中存在大量的甲基与亚甲基基团,同时,由于大量有机聚合物PMAT 的存在,PMAT Fe3O4中Fe O伸缩振动吸收峰(593 cm-1)的强度[7]并不如oleic Fe3O4高;b曲线中,1 707 cm-1的吸收峰表明体系中大量羰基(C=O)的存在,这是由于大量酸酐水解产生羧基所导致,同时a曲线的羰基吸收峰很不明显。
PMAT Fe3O4纳米粒子表面羧基所带负电荷是其能够稳定分散于水环境中的原因之一。
a. oleic Fe3O4; b. PMAT Fe3O42.3 磁性分析磁滞回线显示,oleic Fe3O4的饱和磁化强度Ms为57.0 emu·g-1,PMAT Fe3O4的饱和磁化强度Ms值约为14.0 emu·g-1,见图4。
a. oleic Fe3O4; b. PMAT Fe3O4由图4可见,修饰后Ms 值下降了很多,这可能是由于受到粒子表面较厚的有机修饰物的影响,尽管如此,还是能够满足常用的生物应用要求,很多报道证明了这一点[8-9]。
修饰前oleic Fe3O4的矫顽力为0.183 Oe,修饰后只有微小改变,为0.141 Oe,很接近于0,说明Fe3O4磁核具有良好的超顺磁性[10-11],适合作MRI造影剂。
超顺磁性是指磁性粒子尺寸小于某一临界尺寸时,表现出矫顽力为零,室温热即能够克服磁各向异性使磁矩能够任意翻转的状态。