课程设计说明书课程设计名称:工程光学课程设计课程设计题目:三片式数码物镜的优化设计学院名称:理学院专业班级:光电信息科学与工程激光一班学生学号:1409090119学生姓名:夏志高学生成绩:指导教师:梁春雷课程设计时间:2016/06/27 至2016/07/03课程设计任务书一、课程设计的任务和基本要求1.查阅相关资料,光学设计的基本概念、光学玻璃的相关知识和软件的使用。
2.学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。
3.本课题要求设计出一个三片式数码照相物镜,要求的光学特性为:mmf6=',ω;像质主要以调制传递函数MTF衡量,具体要求是对于低频D,1='f4502=(17lp/mm),视场中心的MTF≥0.9,视场边缘的MTF≥0.80;对于高频(51lp/mm),视场中心的MTF≥0.3,视场边缘的MTF≥0.20,另外,最大相对畸变dist≤4%。
该物镜对d光校正单色像差,对F、C光为校正色差。
4.学习使用ZEMAX进行数据录入和报表输出,分析各种初级像差并设置优化函数;设计三片式数码照相物镜并优化,对像差做简单的分析之后,撰写课程设计论文。
5.课题设计(论文)难度适中,工作努力,遵守纪律,工作作风严谨务实,按期圆满完成规定的任务。
6.综述简练完整,有见解;立论正确,论述充分,结论严谨合理;文字通顺,技术用语准确,符号统一,编号齐全,书写工整规范,图表完备、整洁、正确;论文(设计)结果有一定的参考价值。
二、进度安排1.6月27日:了解光学设计的基本概念、光学玻璃的相关知识和软件的使用。
以单透镜的设计为例学习数据的录入,基本概念和设计思想在软件中的实现,初步掌握ZEMAX的分析工具和数据含义及输出。
2.6月28日至6月29日:学习各种像差的基本概念、描述及评价方法,掌握近轴光线追迹公式。
3.6月30日:学习查找文献资料,选择合适的数码物镜初始结构,用缩放法进行缩放,缓慢调整有关参数并优化,并最终得到比较好的设计参数。
学习光学玻璃材料知识,通过选择合适的玻璃,校正像差。
4.7月1日:整理思路,撰写课程设计论文,论文中要体现像差概念和评价、体现zemax评价函数的构造及优化过程像差的变化;检查格式,符合课程设计论文格式要求。
5.7月2日至7月3日:课程设计答辩并上交论文;三、参考资料或参考文献[1]胡玉禧.应用光学[M].2版,合肥:中国科学技术大学出版社,2015.2[2]张以谟.应用光学[M].3版,北京:电子工业出版社,2010.7[3]郁道银,谈恒英.工程光学[M].3版北京:机械工业出版社,2011.[4]李晓彤,岑兆丰.几何光学像差光学设计[M],杭州:浙江大学出版社,2003.[5]王之江,实用光学技术手册[M],北京:机械工业出版社,2007.[6]王朝晖,焦斌亮,徐朝鹏编著.光学系统设计教程[M].北京:北京邮电大学出版社,2013.8[7]毛文炜.现代光学镜头设计方法与实例[M].北京:机械工业出版社,2013.4.[8]林晓阳.ZEMAX光学设计超级学习手册[M].北京:人民邮电出版社,2014.4本科生课程设计成绩评定表目录1.照相机物镜的发展历程 (1)2.技术要求 (2)3.光学系统成像评价 (3)3.1概述 (3)3.2几何像差及其相应校正方法 (3)3.2.1球差 (3)3.2.2彗差 (4)3.2.3像散 (4)3.2.4场曲 (4)3.2.5畸变 (5)3.2.6色差 (5)4.三片型照相物镜的设计 (5)4.1定义系统参数 (5)4.1.1入瞳直径 (5)4.1.2 孔径值 (6)4.1.3 视场 (7)4.1.4波长 (7)4.2校正及优化 (12)4.2.1调试过程 (12)4.2.2最终优化结果 (13)5.设计总结 (20)6.心得体会 (21)1.照相机物镜的发展历程很早就有透镜的相关记载,比如出现在古希腊阿里斯托芬的戏剧云彩中的烧玻璃;古罗马老普林尼的文字叙述中也表示罗马帝国知道烧玻璃,并且提及矫正透镜第一个可能的用途:说是尼禄用于观看格斗比赛使用的绿宝石。
阿拉伯的数学家Ibn Sahl使用所知的史奈尔定律计算透镜的形状。
最古老的人工制品是在美索不达米亚的尼尼微被挖掘出来的石英透镜,大约出现在纪元前640年。
中国战国时期的《墨子》一书,叙述了透镜成像规律。
《墨子·经下》及《墨子·经说下》的第二四、二五条,便分别叙述了凹透镜和凸透镜的成像规律。
眼镜大约在1280年的意大利被发明,之后透镜才被普遍的利用。
尼古拉斯·库沙则被认为是第一位将凹透镜用于治疗近视的人,时间则是1451年。
恩斯特·阿贝(1860年)提出的阿贝正弦条件,描述了透镜或其他光学系统要能在离开光轴的区域上产生如同在光轴上一样清晰的影像所必须要的条件。
他改革了光学仪器,例如显微镜的设计,主导了光学仪器的研究与发展。
在日常生活中,照相机是人们必不可少的,他历史悠久,发展迅速,给人们的往日生活带来了美好的回忆。
1500年意大利人发明用暗室能观察影像,到十八世纪初出现了木制暗箱。
1812年英国人渥拉斯顿用新月形凹透镜作为暗箱的镜头,能获得较好的影像,这就是后来的照相机镜头的雏形。
1727年德国人发现硝酸银和白粉的混合物具有感光性。
1839年法国人达盖尔发明了银版法,得出了逼真的正像,感光性能有了明显的改进。
法国机械商将带有渥拉斯顿型镜头的木制暗箱装上银版感光片,第一次摄下了人像,成为人类历史上第一架可供使用的照相机。
从第一架照相机问世至今的一百多年来,照相机有了飞速的发展,它的演变历史大致可分为三个阶段:1.从1839年到1938年这近百年的时间,为照相机的初级阶段。
其特点是适应摄影实践的需求,提高照相机的技术性能和发展照相机的品种。
这个阶段后期,形成了照相机工业,并进入了光学机械制造行业。
2.从1939年到五十年代末,为照相机的发展中阶段。
特点是光学机械结构进一步完善,电子技术开始应用在照相机上,这个阶段也是120和135照相机并行发展的时代。
3.从六十年代开始至今,为照相机发展的第三阶段。
照相机已经进入光学精密机械与电子相结合的时代,或称为高级阶段。
2.技术要求',设计出一个三片式数码照相物镜,要求的光学特性为:mmf6=ω;像质主要以调制传递函数MTF衡量,具体要求是对于低频D,1='f4502=(17lp/mm),视场中心的MTF≥0.9,视场边缘的MTF≥0.80;对于高频(51lp/mm),视场中心的MTF≥0.3,视场边缘的MTF≥0.20,另外,最大相对畸变dist≤4%。
该物镜对d光校正单色像差,对F、C光为校正色差。
3.光学系统成像评价3.1概述光学设计必须校正光学系统的像差,但既不可能也无必要把像差校正到完全理想的程度,因此需要选择像差的最佳校正也需要确定校正到怎样的程度才能满足使用要求,即确定像差容限。
对光学系统成像性能的要求主要有两个方面:第一方面是光学特性,包括焦距、像距、放大率、入瞳位置、入瞳距离等;第二方面是成像质量,光学系统所成的像应该足够清晰,并且物像相似,变形要小3.2几何像差及其相应校正方法像差指在光学系统中由透镜材料的特性或折射(或反射)表面的几何形状引起实际像与理想像的偏差。
理想像就是由理想光学系统所成的像。
实际的光学系统,只有在近轴区域以很小的孔径角的光束所生成的像才是完善的。
但在实际应用中,须有一定大小的成像空间和光束孔径,同时还由于成像光束多是有不同颜色的光组成的,同一介质的折射率随颜色而异。
因此实际光学系统的成像具有一系列缺陷,这就是像差。
像差的大小反映了光学系统质量的优劣。
几何像差主要有七种:其中单色光像差有五种,即球差、彗差、像散、场曲和畸变;在实际的光学系统中,各种像差是同时存在的。
它影响了光学系统成像的清晰度、相似性和色彩逼真等,降低了成像质量。
3.2.1球差球差亦称球面像差。
轴上物点发出的光束,经光学系统以后,与光轴夹不同角度的光线交光轴于不同位置,因此,在像面上形成一个圆形弥散斑,这就是球差。
一般是以实际光线在像方与光轴的交点相对于近轴光线与光轴交点(即高斯像点)的轴向距离来度量它。
对于单色光而言,球差是轴上点成像时唯一存在的像差。
轴外点成像时,存在许多种像差,球差只是其中的一种。
除特殊情况外,一般而言,单个球面透镜不能校正球差,正透镜产生负球差,负透镜产生正球差。
对一定位置的物点而言,当保持透镜的孔径和焦距不变时,球差的大小随透镜的形状而异。
单透镜自身不能校正球差。
单正透镜产生的球差是负值,如图2-3(a),单负透镜则产生正球差。
为获得消球差系统,必须采用正负透镜的组合,最简单的形式有正负胶合在一起的双胶合透镜以及正负胶之间有一定的空气间隔的双分离透镜3.2.2彗差光轴外的某一物点向镜头发出一束平行光线,经光学系统后,在象平面上会形成不对称的弥散光斑,这种弥散光斑的形状呈彗星形,即由中心到边缘拖着一个由细到粗的尾巴,其首端明亮、清晰,尾端宽大、暗淡、模糊。
这种轴外光束引起的像差称为彗差。
彗差的大小是以它所形成的弥散光斑的不对称程度来表示。
彗差的大小既与孔径有关,也与视场有关。
由于慧差是垂轴像差,且彗差大小与光束宽度、物体大小、光阑位置、光组内部结构(透镜的折射率、曲率、孔径等)有关。
改变透镜的形状或组合,可较好地消除彗差。
如能对该透镜消除球差,则彗差亦得到改善。
另外当系统结构完全对称,孔径光阑置于系统的中央,且物像放大率为β=-1时,整个光束结构关于系统的中心点对称,如图2-7所示,系统前半部产生的慧差与后半部产生的慧差绝对值相同、符号相反,慧差完全自动消除。
对于彗差的校正:可以利用合适的视场和孔径,但不宜过大;合理选择玻璃材料,改变球面曲率半径;采用对称结构。
3.2.3像散由于发光物点不在光学系统的光轴上,它所发出的光束与光轴有一倾斜角。
该光束经透镜折射后,其子午细光束与弧矢细光束的汇聚点不在一个点上。
即光束不能聚焦于一点,成像不清晰,故产生像散。
像散也是影响清晰度的轴外点单色像差。
当视场很大时,边缘上的物点离光轴远,光束倾斜大,经光学系统后则引起像散。
像散使原来的物点在成像后变成两个分离并且相互垂直的短线,在理想像平面上综合后,形成一个椭圆形的斑点。
像散是通过复杂的透镜组合来消除,对于像散的校正,有以下方法:可以控制视场,小为宜;改变球面曲率;适当透镜材料;合理设置光阑的位置。
3.2.4场曲垂直于主轴的平面物体经光学系统所结成的清晰影像,若不在一垂直于主轴的像平面内,而在一以主轴为对称的弯曲表面上,即最佳像面为一曲面,则此光学系统的成像误差称为场曲。
像散和场曲既有区别又有联系。