基于MATLAB的汽车制动系统设计杨东(昆明理工大学交通工程学院昆明650500)摘要:本课题以汽车制动控制系统的设计为应用背景,利用MA TLAB语言并结合制动理论,开发能进行制动系匹配设计进行设计与仿真。
首先对汽车的运动原理进行分析,建立控制系统模型,确定期望的静态指标(稳态误差)和动态指标(超调量和上升时间),最终应用MATLAB环境下的M文件来实现汽车运动控制系统的设计。
其中M文件用step( )语句来绘制阶跃响应曲线,根据曲线中指标的变化进行PID校正。
关键词:PID 校正;制动系;匹配设计;稳态误差;最大超调量1引言随着国民经济的快速发展,道路条件得到不断改善,高速公路与日俱增,汽车速度普遍提高。
近年来,由于国内汽车保有量的迅速增长(超过4000万辆),交通事故频繁发生,汽车的安全性能受到普遍重视。
汽车制动系统的结构和性能直接关系到车辆、人员的安全,是决定车辆安全性的主要因素。
进行汽车运动性能研究时.一般从操纵性、稳定性和乘坐舒适性等待性着手。
但近年来.随着交通系统的日趋复杂,考虑了道路环境在内的汽车运动性能开始受到关注。
因此,汽车运动控制系统的研究也显得尤为重要。
在现代控制工程领域中,最为流行的计算机辅助设计与教学工具软件是MA TLAB语言。
它是一种通用的科技计算、图形交互系统和控制系统仿真的程序语言。
在可以实现数值分析、优化、统计、自动控制、信号及图像处理等若干领域的计算和图形显示功能[1]。
非常适合现代控制理论的计算机辅助设计。
MTALAB还提供了一系列的控制语句[2,3],这些语句的语法和使用规则都类似FORTRAN、C等高级语言,但比高级语言更加简洁。
它已经成为国际控制界最为流行的计算机辅助设计及教学工具软件,在科学与工程计算领域有着其它语言无与伦比的优势。
2 汽车制动系的匹配设计2.1确定设计目标2.1.1车辆类型及整车质量参数首先要明确设计车辆的类型及相关的整车质量参数,这些内容由总布置给出。
例如某车型定义为座位数为7个用于载客的车辆,根据法规GB/T 15089的规定,属于M1类车辆。
整车的质量参数如下:空载质量(kg)一一1005空载质心高度(mm)一一640空载前轴载荷(kg)一一482一满载质量(kg)一一1550满载质心高度(mm)一一690满载前轴载荷(kg)一一620明确以上整车质量参数后,计算制动系所用到质心到前、后轴的距离等参数均可推算出来。
整车质量参数的输人语句如下:cleclearM1=l;%属于M1类车辆填1,否则填0NI=0;%属于N1类车辆填1,否则填OOTHER=0;%属于其它类车辆填1,否则填0ma_k=1005;%空载质量(kg)ma_m=1550;%满载质量(kg)s=9.80665:%重力加速度(m/s2)hg__k=640;%空载质心高(mm)hg_m=690;%满载质心高(mm)L=2500:%轴距(mm)load_f_k=482;%空载前轴负荷load_f_m---620;%满载前轴负荷b_k=load_f k*L/ma_k;%空载质心到后轴的距离(mm)b m=load_f m*L/ma_m;%满载质心到后轴的距离(mm)a_k=L-b_k;%空载质心到前轴的距离(mm)a_m=L--b_m:%满载质心到前轴的距离(mm)G-k=ma-k*g;%空载重力(N)G-m=ma_m*g;%满载重力(N)2.1.2满足国家法规要求目前国内关于制动系统方面有两个强制性标准,一个是GB厂r1267“1999《汽车制动系统结构、性能和试验方法》,在汽车制动系统结构、性能方面的内容在技术上是等效采用ECE 第13号法规。
另一个是GB7258—2004{机动车安全技术条件》中关于制动系统的部分。
2.1.3制动系统的结构配置根据整车的市场定位、目标价格及供应商配套资源的情况,再加上以往开发经验,选定制动系的配置结构和主要参数。
例如:该车型初选制动系的结构为前盘后鼓、真空助力制动形式,管路布置为Ⅱ型,制动力调节装置采用感载比例阀。
制动系相关参数输入如下:f=0.7;%路面附着系数D=20.64; %主缸直径(ram) Dl=50.8; %前轮缸径(ram) D2=20.64; %后轮缸径(ram) CI=0.7; %前轮制动器因数 C2=2.398; %后轮制动器因数RI=98.5; %前轮制动器作用半径(ram) R2=110; %后轮制动器作用半径(ram) rd=281; %车轮有效半径(mm)p k=3; %感载比例阀空载拐点液压(MPa) p_m=7.2; %感载比例阀满载拐点液压(MPa) u=O .25; %感载比例阀分配比 ip=4.2; %制动踏板杠杆比 is=3.5; %助力器助力比np=O .85; %制动踏板和主缸之间的传动效率 Pol=810; %最大助力点输人力(N) Pw=9.31; %真空助力器拐点压力(MPa) 2.3制动性能计算 2.3.1同步附着系数计算制动力分配曲线上B 线与I 线交点处的附着系数,我们称为同步附着系数汽车在同步附着系数上制动时前、后车轮才能同时抱死,它是由汽车结构参数决定的、反映汽车制动性能的一个参数。
用循环语句for end 计算B 线与I 线方程纵坐标的差值,用条件语句ffend 判断当其小于一定的数值(设定公差)时可认为该点即为B 线与I 线的交点。
以求空载同步附着系数为例,通过以下语句可以实现:d2_k=abs((0.5*(G_k /hg_k*2+4*hg_K*L*m /C_k)'0.5-((c-k*b_k /hg_k+2*m)))-(k2*m+(Fwr_k-k2*lrwLk)));%d2_k 为设定公差(<o .1),m 值即为交点横坐标(前制动器制动力)得出m 值之后,通过空载I 线方程即可求出对应的后制动器制动力,根据公式:即可求出空载同步附着系数。
满载同步附着系数亦可通过同样方法求出。
2.3.2最小制动距离计算由汽车理论,制动距离的计算式为:S=V/3.6(t a +t s /2)+V 2/25.92a max (12)式中:a t —轿车制动系统协调时间a t s 04.0≈ s t —减速度增长时间s t s 2.0≈m a x a —最大制动减速度max a = E 8.0 r *g*0.8=7.73m s /2由于GBfrl2676制动性能必须在车轮不抱死的情况下获得。
故B 线与前轮抱死线(f 线)或后轮抱死线(r 线)的交点,即为车轮即将抱死而未抱死时汽车能发挥的最大制动性能点。
该点的在制动力分配曲线上的横、纵座标值即为此时前、后制动器的制动力值。
交点的求法与同步附着系数交点的求法类似,以空载口线与f 线交点为例,可通过以下语句实现:dfk=abs((o .5*(c k /hg k4(b k*2+4’hg_k+L *fi /G_k)*0.5-(Gj 【+b_k /hg_k*2*G)))-((L-f*hg_k)*fi /(f*hg_k)-G_k*b_k /hg_k));%d2£-k 为设定公差(<o .1),fi 值即为交点横坐标(前制动器制动力)得到前、后制动器制动力后,将减速度、制动初速度和制动器作用时间代人式(12)可求出制动距离。
2.3.3制动系其余性能参数的计算制动系其余性能参数包括管路失效时应急制动的制动距离、制动减速度、管路压力、踏板力,还有驻车制动能力等。
这些参数的计算与上述行车制动性能参数的求法类似,根据相关制动理论。
通过MA TLAB 编辑程序得到需要的结果。
这些参数的求法无须赘述。
2.4制动系参数的匹配设计根据以上计算结果,可得该车型的制动性能参数: 空载同步附着系数 1.0307 空载制动距离(m) 42.2979 空载制动减速度(m/s 2) 6.58474 空载前轮管压(MPa) 4.5188 空载制动踏板力(N) 121.0022 满载同步附着系数 0.92461 满载制动距离(m) 42.542 满载制动减速度(m /s 2) 6.5422 满载前轮管压(MPa) 6.2486 满载制动踏板力(N) 167.3219从表可看出,该车型空、满载同步附着系数较高,在常遇路面制动时,不会出现后轮先抱死的情况。
同时,空、满载制动距离均满足GB/TI12676的规定(制动初速度=80km /h ,制动距离≤50.7m ,制动减速度≥5.8 m /s 2),管路压力与制动踏板力均比较小。
从图5也可看出,空、满载利用附着系数与制动强度的关系曲线是在法规界定线之内的,并且曲线较靠近图中的对角线(妒=z)。
利用附着系数越接近制动强度,地面的附着条件发挥得越充分,汽车制动力分配的合理程度越高。
由图上看,该车型的制动力分配还是比较合理的。
从图6可看出,该车型在各种附着系数路面上制动时,附着效率可达65%以上。
对于应急制动及驻车制动的性能亦可通过得到的参数与法规进行比较,看是否满足法规要求。
不再——叙述。
如果制动系统结构配置不合理,就有可能使某些制动性能参数达不到法规要求。
这个时候就需要对制动系进行匹配,通过改变前、后制动器的作用半径、轮缸大小,或者调整感载比例阀的拐点等使制动系的性能满足法规要求。
制动系结构配置参数方案更改后再运行m 文件程序进行计算,就可得到不同的制动性能曲线和性能参数。
这时有可能会出现诸多能够满足法规要求的方案,这些方案的优劣实践上需要权衡各种结构配置的可靠性、成本、产品通用性或现有产品的改动量等进行综合考虑,很多时候还会根据以往开发经验进行判断。
3 汽车运动控制系统分析考虑图1所示的汽车运行控制系统。
如果忽略车轮的转动惯量,并且假定汽车受到的摩擦阻力大小与运动速度成正比,方向与汽车运动方向相反,则该系统可以简化成简单的质量阻尼系统[4]。
根据牛顿运动定律,该系统的模型(亦即系统的运动方程)表示为其中,u 为汽车的驱动力。
假定m=1000kg ,b=50N.s/m ,u=500N 。
下一步讨论控制系统的设计要求。
当汽车的驱动力为500N 时,汽车将在5秒内达到10m/s 的速度。
由于该系统为简单的运动控制系统,因此将系统设计成8%的超调量和1.8%的稳态误差。
故控制系统的性能指标为:(1) 上升时间 < 5s; (2) 最大超调量 < 8%; (3) 稳态误差 < 1.8%。
其中,稳态误差为静态指标, 超调量和上升时间为动态指标。
图1 汽车运动示意图4 汽车运动控制系统模型建立为了得到控制系统的传递函数,对式(1)进行拉普拉斯变换。
假定系统的初始条件为零,则动态系统的拉普拉斯变换为既然系统输出是汽车的运动速度,用Y(S)替代V(S),得到msV s +bV s =u(s) (2)Y s =V(s)msV s +bY s =U(s) (3)该控制系统的传递函数为Y(s)/U(s)=1/ms+b (4)在此,我们建立好了系统的模型,后面就进行研究系统的校正设计和仿真。