物联网知识
“经济学在当今已不是一个神秘的现象,我们正在不断的挖掘信息背后的价值,而不是制造成本的价值。随着实体社会与信息越来越紧密的结合,信息将作为“一门生意”,变得越来越重要。“这是互联网预言家凯文-凯利对大数据时代的预言。其实,他的这一观点在汽车行业同样受用,未来,车主数据将跟客户的购买意向一样拥有价值。无论是用户在车内还是车外的数据,都将成为汽车企业捕捉用户需求的重要依据。而在2014年TCC论坛上,汽车大数据也成为被屡次提及的关键词,很多行业内外的专家、企业家都认为大数据的应用将彻底颠覆传统制造业的商业模式。
上汽集团股份有限总工程师程惊雷认为,汽车企业与互联网巨头合作的最关键目的就是在合乎规则的条件下充分掌握客户需求。现在的汽车企业是在预测客户的需求,但在未来的互联网经济下,客户将告诉企业自己真正需要什么。未来的汽车生活将给用户提供一整套与汽车相关的定制化组合服务,而这样的商业模式离不开大数据在汽车行业的应用。
由此可以看出,由大数据主导的汽车时代,汽车产品本身将不再是车企的主要盈利点,汽车产品上所搭载的定制化服务和用户在使用服务时所产生的行为信息才是未来汽车生态链中的最大盈利因素。
凯文凯利认为:“在未来,各个产业都将成为数据产业,汽车也将如此。目前,互联网所掌握的消费者喜好、生活习惯等数据信息如果应用到汽车行业,将使汽车产品更加智能,大数据的应用甚至能够影响到汽车产业的生产制造,帮助汽车企业生产出更加符合消费者需求的产品。” 其实,以分析用户需求为目的“客户素描”是目前汽车企业已经在探索的方向,随着大数据技术的日渐成熟,“客户素描”也将变得越来越精准、广泛。这将对整个传统制造产业带来根本性的颠覆,大数据将让制造产业真正变成服务产业,让制造企业变成数据。
对此,JBJAdvisor创始人兼CEO求不礼表示,大数据的应用不仅是收集这些数据,还要了解数据的重要作用和价值,用以解决合适的问题。大数据的关键不是物联网,而是我们从看似无序的数据中获得有价值的信息。在汽车大数据时代,汽车企业将可以向消费者提供定制化的服务体验。车企可以通过用户信息预测车辆将要去哪以及去目的地的原因,从而为用户提供合适的服务和广告资讯。如果汽车大数据的定制化推送服务能够成为现实,汽车作为互联网时代的第四块屏幕,未来改变的将不仅是汽车行业的商业模式,还将改变很多消费类行业的营销渠道。
同时,也有人提出在汽车大数据时代,整车厂甚至OEM(代工工厂)都将和消费者直接建立联系,而不再需要通过经销商,并将彻底颠覆汽车传统的销售渠道。就像现在特斯拉所建立的直销模式和车企都在的O2O销售模式,虽然行业内的大多数人还处于观望态度,但是这些商业模式无疑都为汽车传统经销模式的颠覆撕了口儿。
总之,汽车大数据的应用改变的将不仅是自动驾驶、智能车载系统等技术层面的思维模式,而是将彻底颠覆传统汽车行业的商业模式。无论是目前正在尝试的汽车电商和精准营销,还是未来可能实现的精确客户素面和定制化服务,都离不开大数据技术的应用。对于汽车产业而言,现阶段需要思考的并不是从哪获取数据,而是如何处理数据,让看似无序的“泛数据”变成有意义的信息,最终推送到汽车用户的车载或其他移动终端。
当今的CMOS图像转换技术不仅服务于“传统的”工业图像处理,而且还凭借其卓越的性能和灵活性而被日益广泛的新颖消费应用所接纳。此外,它还能确保汽车驾驶时的高安全性和舒适性。最初,CMOS图像传感器被应用于工业图像处理;在那些旨在提高生产率、质量和生产工艺经济性的全新自动化解决方案中,它至今仍然是至关重要的一环。
据市场研究IMS Research的预测,在未来的几年中,欧洲工业图像处理市场的年成长率将达到6%,其中,在相机中集成了软件功能的智能型解决方案的市场份额将不断扩大。在德国,据其全国工具机供应商协会VDMA提供的数据,2004年的图像处理市场增长率达到了14%。市场调研In-Stat/MDR亦指出,单就图像传感器的次级市场而言,其年成长率将高达30%以上,而且这种情况将持续到2008年。最为重要的是:CMOS传感器的成长速度将达到CCD传感器的七倍,照相手机和数码相机的迅速普及是这种需求的主要推动因素。
显然,人们如此看好CMOS图像转换器的成长前景是基于这样一个事实,即:与垄断该领域长达30多年的CCD技术相比,它能够更好地满足用户对各种应用中新型图像传感器不断提升的品质要求,如更加灵活的图像捕获、更高的灵敏度、更宽的动态范围、更高的分辨率、更低的功耗以及更加优良的系统集成等。此外,CMOS图像转换器还造就了一些迄今为止尚不能以经济的方式来实现的新颖应用。另外,还有一些有利于CMOS传感器的“软”标准在起作用,包括:应用支持、抗辐射性、快门类型、开窗口和光谱覆盖率等。不过,这种区别稍带几分任意性,因为这些标准的重要程度将由于应用的不同(消费、工业或汽车)而发生变化。
细节表现中所面临的难题
就像我们从模拟摄影所获知的那样,拍摄一幅完整场景的照片是一件相当普通的事情,照相手机同样如此。但是,对于工业或汽车应用来说,情况就大不一样了:有些场合并不需要很高的全帧数据速率。比如,在监控摄像机中,只要能够发现一幅场景中出现的变化(因为这种变化可能预示着某种可疑情况),那么分辨率低一点也是完全可以接受的。在此基础之上才需要借助全分辨率来采集更多的细节信息。跟着发生的动作将只在摄像机视场的某一部分当中进行播放,而且,在所捕获的场景中,只有这一部分才是监控人员所关注的。
对于只提供全帧图像的CCD图像传感器而言,只有采用一个分离的评估电路才能够提供两个观测角度,这意味着处理时间和成本的增加。然而,CMOS图像传感器的工作原理则与RAM相似,所有的存储位均可单独读出。CMOS传感器的二次采样虽然提供了较低的分辨率,但是帧速率较高;而开窗口则允许随机选择一块感兴趣的区域。
CMOS传感器坐拥高灵敏度、宽动态范围和低功耗优势
最新CMOS传感器获得广泛应用的一个前提是其所拥有的较高灵敏度、较短曝光时间和日渐缩小的像素尺寸。像素灵敏度的一个衡量尺度是填充因子(感光面积与整个像素面积之比)与量子效率(由轰击屏幕的光子所生成的电子的数量)的乘积。CCD传感器因其技术的固有特性而拥有一个很大的填充因子。而在CMOS图像传感器中,为了实现堪与CCD转换器相媲美的噪声指标和灵敏度水平,人们给CMOS图像传感器装配上了有源像素传感器(APS),并且导致填充因子降低,原因是像素表面相当大的一部分面积被放大器晶体管所占用,留给光电二极管的可用空间较小。所以,当今CMOS传感器的一个重要的开发目标就是扩大填充因子。赛普拉斯(FillFactory)通过其获得专利授权的一项技术,可以大幅度地提高填充因子,这种技术可以把一颗标准CMOS硅芯片最大的一部分面积变为一块感光区域。[nextpage]
另外,对于一个典型的工业用图象传感器而言,由于许多场景的拍摄都是在照明条件很差的情况下进行的,因此拥有较大的动态范围将是十分有益的。CMOS图像传感器通过多斜率操作实现了这一目标:转换曲线由倾度不同的直线部分所组成,它们共同形成了一个非线性特征曲线。因此,一幅场景的黑暗部分有可能占据集成模拟-数字转换器转换范围的很大一部分:转换特征曲线在这里最为陡峭,以实现高灵敏度和对比度。特征曲线上半部分的平整化将在图像的明亮部分捕获几个数量级的过度曝光,并以一个更加细致的标度来表现它们。采用多斜率的方式来运作LUPA-4000将使高达90dB的光动态范围与一个10位A/D转换范围相匹配。
具有VGA分辨率的IM-001系列CMOS图像传感器在此基础上更进一步;它们是专为汽车应用而设计的。其像素由光电二极管组成,可提供高达120dB的自适应动态范围。面向汽车应用的ACM 100相机模块就采用了这些传感器,这种相机模块据称是同类产品中率先面市的全集成化相机解决方案:该视觉解决方案被看作是面向驾驶者保护、防撞、夜视支持和轮胎跟踪导向的未来汽车安全系统的关键元件。
此外,对于独立于电网的便携式应用而言,以低功耗特性而著称的CMOS技术还具有一个明显的优势:CMOS图像传感器是针对5V和3.3V电源电压而设计的。而CCD芯片则需要大约12V的电源电压,因此不得不采用一个电压转换器,从而导致功耗增加。在总功耗方面,把控制和系统功能集成到CMOS传感器中将带来另一个好处:它去除了与其他半导体元件的所有外部连接线。其高功耗的驱动器如今已遭弃用,这是因为在芯片内部进行通信所消耗的能量要比通过PCB或衬底的外部实现方式低得多。
扩展光谱灵敏度和提高分辨率是大趋势
在现代CMOS图像传感器中,一个重要的发展趋势是其光谱灵敏度扩展到了近红外区NIR(至约1,100nm的波长)。配备了IM-001 CMOS图像传感器的汽车应用将改善雾穿透力和夜视能力。由于工业图像捕获技术开始运用更多波长位于NIR之中的光源,而且生物技术也在利用该光谱区域中的有趣现象,因此,新开发的IBIS 5-AE-1300传感器具有700~900nm的NIR灵敏度。
在面向消费应用的图像捕获技术中,另一个发展趋势是继续提高分辨率。到2005年年中,70%左右的手机相机已具有VGA格式分辨率(640×480像素);但随后的2006年,几百万像素的传感器就将占领50%的市场份额,而到2008年,其市场占有率预计将进一步攀升至90%以上。为此,赛普拉斯开发了一种用于蜂窝电话的300万像素图像传感器,该产品采用了Autobrite技术,可进行12位模拟/数字转换,并提供了72dB的宽广动态范围,而目前市面上的10位模拟/数字转换器的动态范围仅为60dB。逐行扫描模式中的帧速率高达30帧/秒,因而可录制实况视频节目。
在工业和商业领域中,这种发展趋势也很明显:赛普拉斯已推出一款用于Kodak数码相机的1,300万像素/35mm图像传感器,另外,660万像素的IBIS 4-6600传感器正在一种面向弱视人群的自动阅读辅助装置中证明自己的卓越品质——它可在一幅完整的标准A4页面上提供出色的分辨率。
凭借技术实现系统集成 由于蜂窝电话、数码相机、MP3播放机和PDA等传统分离型功能设备的加速数字融合(即成为一部紧凑的消费型电子产品),导致人们越来越希望至少具有部分自主性的子系统能够在一部设备中提供极为宽泛的功能。这种趋势还将对专业测量技术产生影响:利用包含一个数码相机、PDA用户接口和WLAN联网能力的便携式检验工具,光测试和监视的应用范围将得到有效的拓展。作为一种平台技术,CMOS符合这一发展潮流:CCD图像转换器仍然需要采用外部逻辑电路来实现控制和模拟/数字转换功能,而CMOS标准逻辑器件则能够把传感器、控制器、转换器和评估逻辑电路等全部集成到一块芯片之中。
一个典型的例子如专门针对要求苛刻的消费应用而制作的CYIWCSC1300AA芯片的图像捕获电路。它基于130万像素图像传感器CYIWOSC1300AA和一个用于提供误差插补、黑电平调整、透镜校正、信号互串校正、彩色马赛克修补、彩色校正、自动曝光、噪声抑制、特效和γ校正等等诸多功能的附加信号处理器。集成更多的系统功能(一直到自主型光电传感器系统)是可行的,这主要取决于诸如市场容量和开发成本等经济目标和限制因素。
当今的CMOS图像转换技术不仅服务于“传统的”工业图像处理,而且还凭借其卓越的性能和灵活性而被日益广泛的新颖消费应用所接纳。此外,它还能确保汽车驾驶时的高安全性和舒适性。最初,CMOS图像传感器被应用于工业图像处理;在那些旨在提高生产率、质量和生产工艺经济性的全新自动化解决方案中,它至今仍然是至关重要的一环。
据市场研究IMS Research的预测,在未来的几年中,欧洲工业图像处理市场的年成长率将达到6%,其中,在相机中集成了软件功能的智能型解决方案的市场份额将不断扩大。在德国,据其全国工具机供应商协会VDMA提供的数据,2004年的图像处理市场增长率达到了14%。市场