当前位置:文档之家› 介孔分子筛的应用研究进展解读

介孔分子筛的应用研究进展解读

应化1004 万泷泷

2010016094

1 介孔分子筛的应用研究进展

摘 要:介孔分子筛是最近几年来引起人们关注的一种新型功能材料,它具有孔分布有序且孔径均匀等结构优点,所以它在催化反应、载体的制备、材料、吸附和分离等领域中有潜在的应用价值。本文主要综述了介孔分子筛的类型和特点,以及其在上述各领域中的应用,尤其介绍了介孔分子筛固体碱催化剂在有机合成中的应用,并对它再催化领域中的应用和价值做了展望。

关键词:介孔分子筛 新型功能材料 催化 载体 材料 固定吸附和分离有机合成 研究进展 应用价值

Abstract Mesoporous molecular sieves , as a totally new functional

material , has successfully caught a prodigious attention of researchers on

chemical application and its major perspective. In terms of catalytic

reaction , the preparation of carrier , material , adsorption and separation ,

it has a important latent application in the large molecule chemistry and

the related processing technology. Based on a large number of reference ,

a brief review is presented on its development, classification and

especially organic synthesis methods.

Key words mesoporous molecular sieves ; applications ; catalytic

reaction ; carrier ; new material ; adsorption and separation ; organic

synthesis

应化1004 万泷泷

2010016094

2 0 前言

按照国际纯粹和应用化学联合会(IUPAC)的定义,孔道尺寸小于2.0 nm的分子筛为微孔分子筛;孔径介于2.0~50 nm为中孔分子筛。其中孔径介于2.0~10 nm之间的为介孔分子筛,介孔的意思是介于微孔和大孔之间;而孔径大于50 nm为大孔分子筛,有时也将小于0.7 nm的微孔称为超微孔,大于1 μm的大孔称为宏孔。介孔分子筛是以表面活性剂为模板剂,利用溶胶—凝胶、乳化、或微乳等化学过程通过有机物和无机物之间界面作用组装生成。介孔分子筛的特点是通常具有规则的孔结构、孔分布窄、高比表面积。介孔分子筛的孔径大且可调、孔道规整、比表面积高在涉及大分子的吸附、分离、催化方面大有前景。

1 介孔分子筛类型及结构特点

介孔材料可以分为硅基和非硅基分子筛两大类,而硅基分子筛又可以分为:FSM—l6型,MCM系列(MCM4l,MCM48,MCMSO),SBA—n系列(SBA1,SBA一2,SBA一3,SBA-i5)。MSU系列(MSU-X(MSU-I MSU一2 MSU一3),MSU—V

MSU-G)HMS,APMs,和PSU一1等类型。

各种不同类型的介孔材料有不同的结构特征,如MCM一41和SBA一15均具有相互平行的介孔孔道,横截面呈六方排列,不同的是MCM-4i只含有介孔,而SBA一15在介孔之间含有一定量的无序排列的微孔。MCM一41的孔径可在1.5nm~lOnm间调节,SBA 15的孔径可在4.6~30nm间变化H孔壁厚度为3.1nm~6.Onm。合成MCM 41所用的模板剂为长链烷基三FfI塘盐(或碱)阳离子表面活性剂,而合成SBA-i5所用的模板剂为非离r高分予是面活性剂。MCM一48为立方孔道结构,具有两个方向不相连的交织 FHL系,孔壁厚度为lnm~3nm,这种分子筛作为催化剂载体使用时,孔道内使物料易于传输,堵孔情况减少。HMS分子筛与MCM-41类似的,六方结构,有序性降低,由于合成条件温和, 且所用的长链伯胺模板剂易回收,此在实际应用中HMS分子筛有很大的吸引力。MSU-H分子筛具有三维立体排列的蠕虫状孔道结构,有利于客体分子在孔道内的扩散,且这种分子筛是以廉价的硅酸钠为硅源,非离子高分子表面活性剂为模板在中性条件下合成的,具有原料廉价,模板剂用量少的特点。

除了硅基分子筛,人们还合成了非硅基份子筛。1995年首次成功合成具有稳应化1004 万泷泷

2010016094

3 定结构的过渡金属氧化物是Antonelli和Ying等人利用改进的溶胶一凝胶工艺合成了具有六方结构的介孔TiO2,此后又利用配位体辅助模板机理成功合成了Nb205和Ta205等有序介孔过渡金属氧化物。以后又相继合成了W03,Sb203,MgO,Al2O3,V205 等以金属氧化物为基质的介孔分子材料。另外,还发展了以金属硫化物,金属盐为基质的介孔分子材料,如以中性表面活性剂为结构导向剂合成的具有超晶格结构的半导体介孔分子材料如CdS,SnS,ZnS等,还有磷酸盐如磷酸铝,钨酸铌,磷酸铝镓,钒磷酸铝,钴磷酸铝等有高比表面积及阴离子交换性能的磷酸盐等。

除了这些基本的类型,为了提高介孔分子筛的结构稳定性,为了扩展介孔分子材料的各种用途,如催化,吸附与分离,光电传感,药物输送,碳纳米管的制备等,在此基础上,制备和研究了其它各种介孔分子材料。首先通过将铁、镧、铝等杂原子引入介孔分了筛骨架,提高了介孔分子筛的结构稳定性。在催化剂研究方面,介孔分子材料由于具有合适的孔径,规则的孔道结构和较大的表面积,通过同晶取代,将各种活性金属(如A1、Ti、V、Mn、Fe、B、Cu、Co、Ca、Zn、Cd等)引入介孔分子筛的骨架中,或将其作为催化剂载体,或将金属氧化物(如Ti0、MgO、Ca0、Pd0、Sn0 等),过渡金属络合物(如全氟酞菁钌、金属卟啉、金属钛菁、席夫碱配合物等),杂多酸, 胺类,等催化活性物质以及其它助催化剂负载到介孔的孔道中,成为各种反应的良好的催化剂。Zhang首次制备了在MCM-4l介孔分子筛上负载铁系催化剂,用来催化乙烯聚合反应,催化活性高,在助催化剂作用下效果更好。Chen等用化学方法将复杂的含锆化合物负载在MCM-41介孔分子筛上来催化乙烯聚合反应,表显出高活性。

2 介孔分子筛的应用

2.1 直接作为酸催化剂用于烃类转化

为了改善固体催化剂上的结炭, 提高产物的扩散速度,Mob il 公司提出可利用MCM 222、MCM 236、MCM 249 等介孔分子筛为催化剂. 在低碳烯烃间转化的骨架异构反应中,虽然MCM 222 和ZSM 25 与5A 分子筛相比, 需要提高反应温度50℃才能获得较高的转化率, 因此较ZSM 25 获得了较少的烯烃和较多的应化1004 万泷泷

2010016094

4 C5饱和烃.在直馏石脑油540℃和0.3MPa下裂解中发现,MCM-41和ZSM-5相比,可以获得更多的C3~C5 烯烃(74%比54% )和较少的低碳气体和直链烃(11%比29% ) ,而且它对异构烷烃的选择性特别高等. 在分子大的芳烃如2, 42二叔丁用肉桂醇烷基化以及醇类和酚类的四氢呋喃烷基化中 ,MCM-41结构上的特点,作为酸催化剂时特别有效.除了酸催化作用外,Na-MCM-41和Cs-MCM-41在碱催化作用中也具有很好的功能.如在苯甲醛和氢基乙酸脂的Knoevenagel缩合反应中、在100℃的水溶液中,于3h内,苯甲醛的转化率可达90% ,产物的选择性达100%.

2.2 作为载体负载金属, 金属配合物和酸

Corma 等使用浸渍Ni(3% )-Mo(12% )的Al-MCM 241 为催化剂催化加氢裂化汽油时发现MCM-41催化剂较浸渍Ni,Mo的USY具有更高的加氢脱硫和加氢脱氮功能.他们把这个性质归结于高比表面和介孔结构,不仅可接受较大的分子,而且催化活化性组份可较好的分散,即使酸性不高,NiMo-MCM-41催化剂在温和的加氢裂化条件下也比USY 活性高. Inui等制得的Pt/FSM-16和Pt/MFI 相比, 在由丙烯合成汽油时,可得大量含C5,C8异构体的产品.Shinoda等利用FSM-16介孔硅铝酸,由相应的芳醛和吡咯合成meso2四苯基卟啉,在所有情况下,除邻甲基苯甲醛之外,以FSM-16为基础的催化剂都可与常用的液体酸催化剂BF3-OEt2相对比.而且,与可溶性催化剂和以KIO处理过的蒙脱土不同, FSM-16经500℃焙烧再生后还可反复使用.稻垣等从高分辨电子显微镜透射及吸附Xe气的XeNMR确认,Pt/FSM-16中的Pt以2~3 nm的超微粒子固载在孔中,这样负载的催化剂有望用作石油改性以及氧化催化剂。Kozhevnikv在MCM~41上固载杂多酸H3PW12O4制成的新型催化剂不仅具有较高的酸强度,而且,由于大孔的存在,还利用有机大分子的可能.当杂多酸在介孔分子筛上负载时比SiO2具有更好的分散性.将金属配合物负载于MCM-41上制得的催化剂,用于催化苯酚羟化反应时,取得了较好的结果.

2.3 通过同晶取代制氧化还原催化剂

这是目前开发的介孔分子筛催化剂最活跃的领域。在Si 骨架中通过同晶取应化1004 万泷泷

2010016094

5 代, 例如, 引入Ti和V等过渡金属离子而制得的介孔分子筛催化剂, 在其孔道内表面骨架中杂原子附近的有限反应场对有机分子的转化具有特殊的作用。它们(Ti-MCM-41) 在H2O2存在下对催化氧化反应不仅显示出可与TS-1,TS-2相比的活性,而且还有其它特别之处。典型的例子为, 虽然TS-1和Ti-MCM-41都对苯的羟化具有活性, 但前者对2-6-二叔丁基苯无羟化作用。这是因为TS-1的孔结构不允许这样大的分子进入内表面与活性部位Ti接触. 在NOx的选择还原反应中, 这类化合物Ti(6.1% )-V(2.5% )/MCM-41和负载在SiO2上的同类性催化剂Ti(3%)-V (2.

6% )/SiO2相比具有更好的活性, 因为MCM-41的大比表面积可使活性组分更好得分散.

2.4 吸附剂

这类介孔分子筛作为吸附剂, 在湿度为20%~80% 内具有迅速脱附的特性.

通过吸附作用控制湿度的范围通常是由孔径的大小控制. 对20%以下的干燥状态和80% 以上高的湿度状态相对比较容易处理, 而对处于中间范围的湿度较难处离.介孔分子筛的出现为解决这类问题提供了有效途径. 同时, 介孔分子筛对苯蒸汽具有在低蒸汽压时就有较高的吸附能力, 相对于自身质量, 吸附量可达60% ,

吸附的苯可在短时间脱附, 使其有可能作为分离剂用于溶剂回收, 储存气体和水处理等材料.

2.5 材料

有序介孔材料具有宽敞的孔道,可以作为储能材料,在电化学应用方面有巨大潜力。介孔材料表面负载金属纳米粒子(如Pt、Pd的氧化物)后,是良好的电极材料。制备高效的催化反应 电极(catalytic electrodes)是涉及能量转化(如燃料电池)的关键 技术之一,一般方法是将有催化活性的纳米粒子负载到有导电能力并且抗腐蚀的载体(如碳黑)上,纳米离子与碳黑仅仅有弱 的物理吸附作用,在反应条件下,此种方法制备的电极上的纳米 粒子非常容易聚集成团,因而大大减少催化反应活性中心,缩短 电极的使用寿命。Ding等在多孔金材料上包覆一层原子水平的铂薄膜的催化电极材料,具有很高的催化活性,并且活性点分布均匀。Chai等把介孔碳材料作为甲醇燃料电池催化剂Pt(50)-Ru(50)

相关主题