当前位置:文档之家› (整理)函数的一致连续性63604

(整理)函数的一致连续性63604

§2.9 函数的一致连续性定义 2.21 设f 是X 上的单变量函数.若0,0εδ∀>∃>,使得当12,x x X ∈,12x x δ-<时总成立12()()f x x ε-<,则称f 是X 上的一致连续函数.显然,若f 是X 上的一致连续函数,则f 一定是X 上的连续函数(反之通常不正确).命题1 (不一致连续的充要条件) X 上的单变量函数f 不一致连续0ε⇔∃>和{},{}n n x y X ⊂,使得lim()0n n n x y →∞-=,并且()()n n f x f y -,n ε*≥∀∈.证: “⇒”.假定f 不是X 上的一致连续函数,则0ε∃>,n *∀∈,n x ∃,n y X ∈满足1n n x y n-<和()(),n n f x f y n ε*-≥∀∈.这说明右边成立.“⇐”.假定0ε∃>和{}n x ,{}n y X ⊂,使得l i m ()0n n n x y →∞-=,并且()(),n n f x f y n ε*-≥∀∈.这时,0δ∀>,,,N N N N x y X x y δ∃∈-<使得()()N N f x f y ε-≥.这说明f 不是X 上的一致连续函数.□ 命题 2 若f 是区间..I 上的一致连续函数,00δ>是常数,则必存在0M >使得当,x y I ∈,0x y δ-≤时总成立()()f x y M -≤.证:对于固定的0,0εδ>>取,使得当12,x x I ∈,12x x δ-<时总成立12()()f x x ε-<.再取n *∈使得,M n nδδε<=令.当,,x y I ∈x y -0δ≤时,()()f x f y -11(())(())nk k kf x y x f x y x n n=-≤+--+-∑n ε< M =.□命题 3 有限开区间(,)a b 上的连续函数f 一致连续⇔存在有限单侧极限()f a +和()f b -.证:“⇒”.若f 是(,)a b 上的一致连续函数,即0,0εδ∀>∃>,使得当,(,),2x y a b x y δ∈-<时成立()()f x f y ε-<,则当,(,)x y a b ∈,0x a <-,0y a δδ<<-<时有()()f x f y ε-<.根据函数单侧极限的Cauchy 收敛原理,便知存在有限右极限()f a +.同理,存在有限左极限()f b -.“⇐”. (反证法)假定存在有限单侧极限()f a +和()f b -,但连续函数f 不一致连续.由命题1,0ε∃>和{},{}(,)n n x y a b ⊂,使得l i m ()0n n n x y →∞-=,并且()()n n f x f y -,n ε*≥∀∈.取{}n x 的收敛一个子列{}n k x ,则(1),n n k k x y a →+;(2),n n k k x y b →-;(3)0,n n k k x y x →(,)a b ∈三者必居其一.这样,便有0lim ()()n n k k n f x f y →∞=- 0ε≥>,得到矛盾.□ 例1 设Y X ∅≠⊂⊂.(1) 若f 是X 上的连续函数,则f 也是Y 上的连续函数; (2) 若f 是X 上的一致连续函数,则f 也是Y 上的一致连续函数. (3) 若,f g 都是X 上的一致连续函数,则f g ±也是X 上的一致连续函数.(4) 若,f g 都是一致连续函数,g f 有意义,则g f 也是一致连续函数.例2 当常数(0,1]μ∈时,幂函数x μ是[1,)+∞上的一致连续函数. 证: 121x x ∀≤<,有不等式1111112222(1)(1)x x x x x x x x μμμμ---=-≤-=-,即 2121x x x x μμ-≤-. 故 0ε∀>,令0δε=>,则当12,[1,)x x ∈+∞,12x x δ-<时总成立1212x x x x μμδε-≤-<=.□例3 (连续但不一致连续的函数) 当常数(1,)μ∈+∞时,幂函数x μ不是[1,)+∞上的一致连续函数(这说明两个一致连续函数的积可能不是一致连续函数).证: 1x y ∀≤<,有不等式 11()y x x y x x y x μμμμμ---≥-=-.n *∀∈,令 11,n n x n y n n μ-==+,则 11lim()lim 0n n n n y x n μ-→∞→∞-==, n n y x μμ-1()n n n x y x μ-≥-1111n nμμ--==.由命题1便知x μ不是[1,)+∞上的一致连续函数.□例4 (连续但不一致连续的函数) 1sin x不是(0,1)上的一致连续函数.证: 由命题3.□ 例 5 10,xσ∀>是[,)σ+∞上的一致连续函数,但却不是(0,)+∞上的一致连续函数.证: 12x x σ∀≤<,有不等式21212121211x x x x x x x x σ---=≤.故0ε∀>,令20δσε=>,则当12,[,)x x σ∈+∞,12x x δ-<时总成立1211x x -212x x σ-≤ε<. 这说明1x 是[,)σ+∞上的一致连续函数. 由命题2或命题3知1x不是(0,)+∞上的一致连续函数.□练习题2.9(109P ) 1,2,3. 问题2.9(109P ) 2.§2.10 有限闭区间上连续函数的性质定理 2.22(一致连续性) 若f 是有限闭区间[,]a b 上的连续函数,则f 必在[,]a b 上一致连续.证:(利用有限闭区间的列紧性反证) 假定连续函数f 不一致连续,即0ε∃>和{}n x ,{}n y ⊂[,]a b ,使得 lim()0n n n x y →∞-=,并且()()n n f x f y -ε≥,n ∀*∈.取{}n x 的一个子列{}n k x 收敛于0[,]x a b ∈,则{}n k y 也收敛于0[,]x a b ∈,从而0lim ()()0n n k k n f x f y ε→∞=-≥>,得到矛盾.□ 定理2.23和2.24 (最大值和最小值的可达性) 若f 是有限闭区间[,]a b 上的连续函数,则必00,[,]x y a b ∃∈,使得0()min ()a x bf x f x ≤≤=, 0()m ()a x bf y ax f x ≤≤=.作为推论,f 在[,]a b 上有界.证:(利用有限闭区间的列紧性)仅证最小值的可达性.令inf ([,])m f a b ∞=∈,由§1.9的命题2知,{()}([,])n f x f a b ∃⊂使得lim ()n n f x m →∞=.取{}n x 一个子列{}n k x 收敛于0[,]x a b ∈,便有0l i m ()()nk n m f x f x →∞==,即0()min ()a x bf x f x ≤≤=.□ 定理2.25和2.26 (介值定理和零值定理) 若f 是有限闭区间[,]a b 上的连续函数,()()f a f b ≠,则∀介于()()f a f b 和之间的实数γ,必c ∃∈(,)a b 使得()f c γ=.作为推论,若()()0f a f b <,则必c ∃∈(,)a b 使得()0f c =.证: (利用区间的连通性) 记{[,]:()}A x a b f x γ=∈<,{[,]:B x a b =∈()f x }γ≥,则A ≠∅,B ≠∅,,[,]AB AB a b =∅=.由[,]a b 的连通性,或者可取{}n x A ⊂收敛于c B ∈,此时()lim ()n n f c f x γγ→∞≤=≤;或者可取{}n y B ⊂收敛于1c A ∈,此时1()lim ()n n f c f y γγ→∞>=≥(该情形不会出现).因而()f c γ=,c ∈(,)a b .□推论 若f 是区间I 上的连续函数,则()f I 也是区间.证:(利用区间的连通性),(),l L f I l L ∀∈<,要证(,)()l L f I ⊂. 取,a b I ∈满足()f a l =,()f b L =,并不妨设a b <.(,)l L γ∀∈,c ∃∈(,)a b使得()f c γ=.这说明()f I γ∈,从而(,)()l L f I ⊂.□ 例1 任何实系数奇次多项式必有实根.证: 设()p x 是实系数奇次多项式(首系数为1), 则lim (),x p x →+∞=+∞lim ()x p x →-∞=-∞.故当0A >充分大时,有()0,()0f A f A >-<,从而(,)c A A ∃∈-使得()0p c =.□例2(115P ,8)设([0,1])f C ∈,(0)(1)f f =.求证n *∀∈,n x ∃∈1[0,1]n-使得1()()n n f x f x n=+.证: 考虑1[0,1]n -上的函数1()()()x f x f x n ϕ=-+.由于01()()n n ϕϕ+101121()()()()()()()0n n nf f f f f f n n n n nn nϕ--++=-+-++-=,故或者()0,01kk n nϕ=∀≤≤-,或者1212,,01k k k k n ∃≤<≤-,使得12()()0k k n n ϕϕ<.由零值定理便知n x ∃∈1[0,1]n-使得()0n x ϕ=.□练习题2.10(114P ) 2,4,5,7,9,10,11. 问题2.10(114P ) 2,4.§2.11 函数的上极限和下极限本节内容与数列的上极限和下极限的概念及相关结论完全一样. 定义2.22 设f 是X 上的单变量函数,0x ∈是X 的极限点,那么 00{:{}\{},lim ,lim ()}n n n n n E l x X x x x f x l ∞→∞→∞=∈∃⊂==≠∅使得.记 0limsup ()sup x x f x E →= 和 0liminf ()inf x x f x E →=,分别称为当0x x →时f 的上极限和下极限;或称为f 在0x 处的上极限和下极限.类似地,能定义当00,,,,x x x x x x x →+→-→+∞→-∞→∞时f 的上极限和下极限.注记2.22' X 上的单变量函数f 在X 的极限点0x 处的上极限和下极限一定存在,其值与f 在0x 处是否有定义无关,只与f 在0x 的去心邻域00{:0}Xx X x x δ∈<-<上的定义有关.这里,0δ是固定的正数.注记2.22'' 设f 是X 上的单变量函数,0x ∈是X 的极限点.0δ∀>,记0()sup{():,0}f x x X x x ψδδ=∈<-<, 0()inf{():,0}f x x X x x ϕδδ=∈<-<,则()ψδ在(0,)+∞上递增, ()ϕδ在(0,)+∞上递减(注意()ψδ和()ϕδ可能不是函数).故存在广义右极限0lim ()δψδ→+和0lim ()δϕδ→+.这两个广义右极限就是当0x x →时f 的上极限和下极限.当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似.定理2.27 设f 是X 上的单变量函数,0x ∈是X 的极限点,{E l =∈:∞00{}\{},lim ,lim ()}n n n n n x X x x x f x l →∞→∞∃⊂==使得.则β∞∈是当0x x →时f 的上极限(或下极限)的充要条件是(1) E β∈;(2) (),0y y ββδ∀><∃>或,使得当0,0x X x x δ∈<-<时成立()f x y <(或()f x y >).当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 推论 设条件如同定理2.27,则sup max ,inf min E E E E ==.定理2.28 设,f g 是X 上的单变量函数,0x ∈是X 的极限点,则有(1) 0liminf ()limsup ()x xx x f x f x →→≤;(2) 0lim ()liminf ()limsup ()x xx x x x f x a f x f x a ∞→→→=∈⇔==;(3) 当00,0x X x x δ∈<-<时成立()()f x g x ≤⇒liminf ()liminf (),limsup ()limsup ()x x x x x x x x f x g x f x g x →→→→≤≤.当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似.补充定义 设f 是X 上的单变量函数,0x X ∈是X 的极限点.若0limsup ()()x x f x f x →≤,则称f 在0x 处上半连续;若00liminf ()()x x f x f x →≥,则称f 在0x 处下半连续.命题 设f 是X 上的单变量函数,0x X ∈是X 的极限点.那么f 在0x 处连续⇔f 在0x 处既上半连续又下半连续.例(115P ,问题3)设f 是[,)a +∞上有界的连续函数,求证0λ∀>,{}n x ∃[,),lim n n a x →∞⊂+∞=+∞,满足lim(()())0n n n f x f x λ→∞+-=.证: 记limsup(()())x f x f x L λ→+∞+-=,liminf (()())x f x f x l λ→+∞+-=,则,l L ∈.(1) 当0l =或0L =时,结论显然成立.(2) 当0l L <<时,{},{}[,)n n y z a ∃⊂+∞,lim n n y →∞=+∞,lim n n z →∞=+∞,使得()()0n n f y f y λ+-<,()()0,n n f z f z n λ*+->∀∈.利用零值定理,可取(,)n n n x y z ∈使得()()0n n f x f x λ+-=.显然{}n x 满足要求.(3) 0l >或0L <这两种情形不会出现.(反证法)假定0l >成立,则N *∃∈,使得当x N λ≥时成立()()2lf x f x λ+->.故当n N >时成立1()()[()()]()2n k Nlf n f N f k f k n N λλλλλλ-=+-=+->-∑.这与f 有界相矛盾.同理,能证0L <不成立.□练习题2.11(118P ) 1,2,3.。

相关主题