当前位置:文档之家› 考博必看--电力系统分析上册(诸骏伟)-课程总结

考博必看--电力系统分析上册(诸骏伟)-课程总结

第一章能量管理系统1.EMS的含义和作用1).EMS 是以计算机为基础的现代电力系统的综合自动化系统,是预测、计划、控制和培训的工具。

2).EMS 主要针对发电和输电系统,用于大区级电网和省级电网的调度中心。

3).EMS 涉及计算机硬软件的各个方面。

它最终是通过EMS 应用软件来实现对电力系统的监视、控制和管理。

2.EMS的主要内容数据收集级(SCADA) ,能量管理级(GMS&OPS) 包括实时发电控制,系统负荷预测,发电计划(火电调度计划),机组经济组合,水电计划(水火电协调计划),交换功率计划,燃料调度计划,机组检修计划. 网络分析级(NAS)包括实时网络状态分析,网络结线分析,母线负荷预测,潮流,网络等值,网络状态监视,预想故障分析,安全约束调度,无功优化,最优潮流,短路电流计算,电压稳定分析,暂态分析.培训模拟级。

3.现有EMS存在的问题1).EMS已得到了广泛的应用,但目前只停留在分布式独立计算分析阶段,多数高级应用软件都需要人工调用,然后由调度员进行综合决策。

2).在电网事故状态下,没有良好的事故分析、定位和恢复手段.3)电力改革使得情况更加复杂。

4.EMS的发展趋势针对现有的EMS存在的问题,需加入决策系统,增强、扩充了网络分析功能,未来向着调度机器人的方向发展。

第二章电力系统潮流计算1.潮流计算的定义2.各种潮流计算的模型和算法的特点、适用范围以及相互之间的区别和联系。

(一) 高斯——塞德尔迭代法该算法具有存储量小,程序设计简单的优点。

但收敛速度慢,阶梯式逼近时台阶的高度越来越小,以至于迭代次数过多。

算法特点:1)在系统病态的情况下(重负荷节点负电抗支路较长辐射型线路长短线路接在同一节点上,且长短线路的比值很大),收敛困难。

计算速度缓慢每次迭代速度很快,但由于结构松散耦合,节点间相互影响太小,造成迭代次数增加,收敛缓慢。

2)程序编制简便灵活(二)、牛顿——拉夫逊迭代法(N_L)算法特点1)平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅与节点数成正比。

2)对初值很敏感,有时需要其他算法为其提供初值。

3)对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。

但幅度不能太小。

4)对以节点导纳矩阵为基础的G_S法呈病态的系统,N_L法一般都能可靠收敛。

牛顿迭代法有明显的几何解释:收敛速度:平方收敛收敛性:局部收敛(三)、PQ分解法潮流N_L法的J阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N_L法的大部分计算时间,这也是N_L法速度不能提高的原因。

可能性:N_L法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。

算法特点1)用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量2)迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间3)迭代矩阵对称,可上(下)三角存储,减少内存量和计算量4)基于以上原因,该算法内存需要量为N_L法的60%,每次迭代所需时间为N_L法的1/5。

5)线性收敛,收敛次数多于N_L法,但总的计算速度任能大幅度提高。

6)对R/X过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kv及以上的电网。

7)由于算法的精确程度取决于 ,P-Q分解法的近似处理只影响计算过程,并不影响结果的精度。

3.影响潮流收敛性的因素以及如何改善潮流计算的收敛性。

(如果计算潮流不收敛,应该采用何种方法改进)云杰的答案:主要是看潮流方程组本身是否有解,当方程组有解或者无实数解,或者方程组有解但是算法不够完善时,潮流计算将不收敛。

采用的方法是用数学规划来求解潮流方程的解——即非线性规划潮流计算。

这样:1 从原理上保证计算过程不发散。

2 有解——目标函数趋近于03 无解——目标函数停留在不为0的正值上。

(如果计算潮流不收敛,应该采用何种方法改进)第三章电力系统状态估计1 状态估计的定义环境噪声使理想的运动方程无法精确求解。

测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。

只有通过统计学的方法加以处理以求出对状态向量的估计值。

这种方法,称为状态估计。

2.状态估计的作用和步骤作用:降低量测系统投资,少装测点;计算出未测量的电气量;利用量测系统的冗余信息,提高量测数据的精度(独立测量量的数目与状态量数目之比,成为冗余度)。

状态估计的流程3、状态估计与潮流计算的关系⏹潮流计算是状态估计的一个特例⏹状态估计用于处理实时数据,或者有冗余的矛盾方程的场合⏹潮流计算用于无冗余矛盾方程的场合⏹两者的求解算法不同⏹在线应用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过加工处理过的熟数据,作为潮流计算的原始数据。

4各种状态估计模型和算法的特点1)基本加权最小二乘法的估计质量和收敛性最好,是状态估计的经典解法和理论基础,适合各种类型的量测系统。

缺点是使用内存多,计算量大,计算时间长,不适用于大型电力系统的实时状态估计。

2)快速解耦法估计质量和收敛性能在实用精度范围内与基本加权最小二乘法相近,而在计算速度和内存耗量方面优于基本加权最小二乘法,很实用,缺点是使用内存较多,程序也比较复杂。

3)仅用支路量测量的唯支路法计算速度快,内存省,对于纯支路量测系统可以得到满意的估计结果,且运行经验丰富,缺点是不能处理注入型量测量。

4)递推状态估计使用内存最少,对注入型量测量具有一定的适应能力,程序简单。

缺点是收敛速度慢,计算时间长,估计质量差。

5) 数学规划法的计算速度慢,但其受不良数据的影响较小。

正交变换的特点:变换后矩阵的范数不变。

判断增加哪些测量点,可以取得最佳的估计效果;提高状态估计的数值稳定性。

5 相关的概念和定义1)通常测量错误数据分为两类:一类是稳定的错数(属设备和维修问题);另一类是在一次采样周期中随机出现的错误数据(即下一次采样不一定还是那几个错误数据)。

状态估计现场安装后一段时间主要是消除第一类错数,或者是设备损坏,或者是符号相反。

随着状态估计使用时间加长和维护工作的完善,第一类错数逐步减少,正常运行中往往开关状态错误(测量错或无测量)是引起这一类错数的主要原因。

第二类错数是由测量与传送系统质量以及受到干扰而产生的。

2)几个概念⏹ 不良数据检测:判断某次量测采样中是否存在不良数据。

⏹ 不良数据辨识:通过检测确知量测采样中存在不良数据后,确定不良数据具体侧点位置。

⏹ 不良数据估计:不仅能确定不良数据具体侧点位置,还能给出不良数据估计值。

不良数据辨识定量化。

⏹ 状态估计修正:根据不良数据估计值,对原来受不良数据影响的状态估计进行修正,从而排除不良数据的影响,获得可靠状态估计。

3)不同水平的检测与辨识⏹ 量测量的极限检查:超出正常运行条件下的可能范围,而系统又没有事故或异常。

⏹ 量测量的突变检查:在平稳负荷条件下,某一量测量超过正常变化速率或发生突变,随后下一采样时刻又恢复了。

⏹ 量测量的相关检查:一个量测量变化后,检查与其紧密相关的数据是否也相应变化。

⏹ 状态估计中的检测与辨识。

4)不良数据辨识⏹ 不良数据的估计辨识法⏹ 应该说量测系统辨识不良数据的最大能力不会超过冗余度K ,而且由于不良数据分布的不均匀性先破坏了局部可观测性,实际上辨识能力远远低于这一数量。

假设在一次测量中包含p 个不良数据,而且由一可靠的检测系统检测出S 个可疑数据,这里不妨用p 和S 分别表示不良数据和可疑数据的集合与数量,检测功能可表示为:S p ∈,K S p <≤;前一式表示不良数据已包含在可疑数据中,后一式表示这些不良数据可辨识。

第四章 电力系统静态安全分析1.静态安全分析的定义凡用来判断在发生预想事故后系统是否会发生过负荷或电压越限的功能称为静态安全分析。

2.电力系统各种运行状态的定义及其相互转换关系安全正常状态(secure normal state )、不安全正常状态(insecure normal state )、紧急状态(emergency state )和恢复状态(restorative state )。

正常状态时负荷约束与运行约束均被满足的状态。

不安全正常状态指系统存在安全隐患的状态。

而紧急状态指对运行约束有重大破坏的状态。

恢复状态是指负荷约束被破坏的状态。

关系:3.安全性和可靠性的区别和联系方法一:1)在系统规划设计或历史统计方面,系统保证对负荷持续供电的能力,称为可靠性。

它涉及到较长的时间段,是一个长时期持续供电的平均值概念,为此必须考虑众多可能的运行状态及各种故障;2).统运行方面,当系统发生故障时,保证对负荷持续供电的能力,称为安全性。

它涉及到系统的当前现状和突然发生的故障,因此是一个时变的或瞬时性的问题。

方法二:把事故下互联系统持续供电的保证程度,也称为系统的可靠性。

认为应从下列两方面来评价所谓的可靠性:充裕性(或充裕度adequacy):指在规定的(一般指列于检修计划之内的)或未被规定的发电、输电元件开断情况下,系统保证充分满足所有用户总电能需量的能力;这时不应出现主要设备违反容量定额与电压限值的越限现象。

安全性(或安全度security):指在突发性故障引起的扰动下系统保证避免发生不可控连锁跳闸,或保证避免引起广泛波及性供电中断的能力。

充裕性和安全性虽然都涉及系统供电持续性的中断,但是充裕性是指一个或少量输、配电点因供电能力不够充裕而引起的供电中断;安全性则是指众多的输、配电点因受到广泛波及性的跳闸而引起的大面积供电中断。

在安全性的这一概念下,偶尔或个别的负荷供电中断,有时是可以接受的,这主要取决于负荷本身的重要程度。

4.电力系统安全分析的内容和流程5.各种静态等值的原理和特点(1)Ward等值:这种配合方法特别适用于在线应用。

缺陷:1)等值网可能有一个解答,但求解的方法不能使它收敛;2)等值网可能收敛到一个物理上不合理的解答上;3)等值网可能收敛到一个所需的解答上,但迭代次数要多于为简化网;4)等值网解答的准确度可能是难以接受的。

(2)Ward等值改进:1).并联支路的处理(在等值过程中最好不要考虑外部系统的并联支路。

而这些并联支路的作用可以在边界的等值注人中,与外部系统的运行状态一并考虑)。

2).保留外部系统中的部分PV节点(当内部系统出现事故后,就从这些电压不变的PV节点向内部系统提供适当的无功功率支援)。

(3)REI等值:把外部网中的节点注入功率加以归并,移到外部的一个或少数几个节点上、原来的外部网络就变成了无源网络,然后再对外部的无源网络进行等值。

相关主题