当前位置:文档之家› 重要极限的证明

重要极限的证明

1.求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ
/(2n+1))=√(2n +1)/2^n,
Sol:复数方法:
复数方程 z^(2n+1)=1的根是 a1,a2,a3,...,a(2n),1。

其中,ak=cos(2kπ/(2n+1))+i sin(2kπ/(2n+1)),k=1,2,...,2n。

所以,ak=(a1)^k
所以,z^(2n+1)-1=(z-a1)(z-a2)...(z-a(2n))(z-1),即
(z-a1)(z-a2)...(z-a(2n))=(z^(2n+1)-1)/(z-1)=z^(2n)+z^(2n-1)+...+z+1。

两边令z=1,并取模,则:
|1-a1|×|1-a2|×......×|1-a2n|=2n+1.........(*)
因为,|1-ak|=√|(cos(2kπ/(2n+1))-1))+i sin(2kπ/(2n+1))|=2×
sin(kπ/(2n+1)),所以由(*)式得:
2^n×sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))
=2n+1。

所以,sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ/(2n+1))=√(2n+1)/2^n
2.三角函数
求证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))……sin(nπ
/(2n+1))=√(2n +1)/2^n.
证:sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ
/(2n+1))=√(2n +1)/2^n
设Z=cos2π/(2n+1)+ isin2π/(2n+1)
则x^(2n+1)=1的根为1,z,...z^2n
得x^2n+...+x+1=(x-z)(x-z^2)...(x-z^2n)
2n+1=|(1-z)||(1-z^2)|...|(1-z^2n)| (1)
又|(1-z^k)|=2sinkπ/(2n+1) (2)
|1-z^k| = |1-(cos(2kπ/(2n+1)) +sin(2kπ/(2n+1)) )|
=|1-cos(2kπ/(2n+1))) -sin(2kπ/(2n+1)) )|
=√((1-2cos(2kπ/(2n+1)) +cos^2 (2kπ/(2n+1))) + sin^2 (2kπ/(2n+1))) =√(2-2cos(2kπ/(2n+1)) )
=√(4sin^2(kπ/(2n+1))
=2sin(kπ/(2n+1)

2n+1 =( n(π/(2n+1)). n(2π/(2n+1)) n(3π/(2n+1))........ n(2nπ/(2n+1)) 两边开方,得
sin(π/(2n+1))sin(2π/(2n+1))sin(3π/(2n+1))........sin(nπ/(2n+1)) =√(2n+1) / 2^n
另外那个类似,可以尝试自己证一下.
3.为什么sinπ/n+sin2π/n......+sin(n-1)π/n=cotπ/2n?
解:2 sin [π/(2n)]·sin(π/n)= cos [π/n -π/(2n)]- cos [π/n +π/(2n)]= cos [π/(2n)]- cos [3π/(2n)]2 sin [π/(2n)]·sin(2π/n)= cos [2π/n -π/(2n)]- cos [2π/n+π/(2n)]= cos [3π/(2n)]- cos
[5π/(2n)]2 sin [π/(2n)]·sin(3π/n)= cos [3π/n -π/(2n)]- co s [3π/n +π/(2n)]= cos [5π/(2n)]- cos [7π/(2n)]……2 sin [π/(2n)]·sin[(n-1)π/n]= cos [(n-1)π/n -π/(2n)]- cos [(n-1)π/n +π/(2n)]= cos [(2n-3)π/(2n)]- cos [(2n-1)π/(2n)]
故:2 sin [π/(2n)] ·{sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]}= cos [π/(2n)]- cos [(2n-1)π/(2n)]= cos [π/(2n)]- cos [π-π/(2n)]=2 cos [π/(2n)]
故:sin(π/n)+sin(2π/n)+......+sin[(n-1)π/n]= cos[π/(2n)]/ sin
[π/(2n)]= cot [π/(2n)]
4.级数sin n/(n+1)收敛还是发散,如果收敛,是绝对收敛还是条件收敛,为什么? Sol:收敛,Dirichlet 判别法.这是最典型的一个用Dirichlet 判别法判别收敛的例子.sinn 的部分和=[sin1/2(sin1+sin2+...+sinn)]/sin1/2(积化和差公式)=[cos1/2-cos(2n+1)/2)]/sin1/2,于是有界,1/(n+1)单调递减趋于0,收敛.不绝对收敛.|sinn/(n+1)|>=sin^2n/(n+1)=[1-cos(2n)]/2(n+1).类似用Dirichl et 判别法知道级数cos2n/(n+1)收敛,但级数1/(n+1)发散,于是易知不绝对收敛.建议记住这个典型例子.
1
2122ln ln ...ln lim .2ln ln ln ...ln n ln 2ln 1:ln 2ln =ln 2
o n n n n x n
o n n n n c c c I n
n c c c n n sol n n n n n
I →∞+++=+++-≤==-求
5.求sin π/n*sin2π/n*…*sin(n-1)π/n 的值,用复数思想
6.三角函数连乘(正弦)求证:sin[π/(2n+1)]*sin[2π/(2n+1)]*sin[3π/(2n+1)]*……*sin[nπ/(2n+1)]=(根号下2n-1)/2^n
Sol:
7.证一般项级数∑sin√(n^2+1)π条件收敛
Sol:∵sin√(n²+1)π
=[(-1)^n]sin[√(n²+1)π-nπ]
=[(-1)^n]sin[√(n²+1)-n]π
=[(-1)^n]sin{1/[√(n²+1)+n]}π
lim(n→∞)[sin{1/[√(n²+1)+n]}π]/(1/n)
=lim(n→∞)nπ/[√(n²+1)+n]
=π/2
∴∑sin{1/[√(n²+1)+n]}与∑1/n有相同的敛散性,即∑sin{1/[√(n²+1)+n]}π发散
lim(n→∞)sin{1/[√(n²+1)+n]}π=0,且sin{1/[√[(n+1)²+1]+(n+1)]}π≤sin{1/[√(n ²+1)+n]}π
由莱布尼兹判别法知lim[(-1)^n]sin{1/[√(n²+1)+n]}π收敛
∴原级数条件收敛
其他回答:sin√(n^2+1)π=(-1)^n sin(√(n^2+1)π+nπ)
再利用分子有理化可得:(-1)^n sin(π/[根号(n^2+1)+n])
利用 Dirichlet判别法可知级数收敛。

而它的绝对值级数可以等价为:sin(π/[根号(n^2+1)+n])~π/[根号(n^2+1)+n]~1/n即发散。

9.Sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n) 这等式怎么证?大概要从哪个方面入手?
sin(π/n) ×sin(2π/n) ×sin(3π/n) ×…×sin[(n-1)π/n]=n×2^(1-n)
用复数
w=cos(2π/n)+isin(2π/n)
w'=cos(2π/n)-isin(2π/n)
z^n=1
(z-1)(z^(n-1)+z^(n-2)+……+z+1)=0
z^(n-1)+z^(n-2)+……+z+1=(z-w)(z-w^2)(z-w^3)……(z-w^(n-1))

z=1
n=(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))
1-w^k=2sinkπ/n(sinkπ/n+icoskπ/n)
|1-w^k|=|2sinkπ/n(sinkπ/n+icoskπ/n)|=|2sinkπ/n||(sinkπ/n+icoskπ
/n)|=|2sinkπ/n|=2sin(kπ/n)
取模
|n|=|(1-w)(1-w^2)(1-w^3)…(1-w^(n-1))|
|n|=|(1-w)||(1-w^2)||(1-w^3)|…|(1-w^(n-1))|
n=2^(n-1)sin(π/n)sin(2π/n)……sin[(n-1)π/n]
得证。

相关主题