当前位置:
文档之家› 论完全泛函的变分问题_老大中
论完全泛函的变分问题_老大中
x0
无论边界如何 , 泛函的欧拉方程都可写成
(1 )
Fy -ddxFy′=0 .
(2 )
随着泛函所依赖的函数的导数和自变 量的增 加 , 泛函变得越来越复杂 , 后人得到了多个有关泛函 变分问题的方程 , 这些方程都是欧拉方程的推广 , 在 变分法中 , 都称为欧拉方程 , 其具体形式可参见文献
[ 1 -3] .这些方程都 是由泛函取极值的必要条件 ———泛函的一阶变分为零得到的 .
式(7)~ (10)有两个规律 , 一个规律是求和项中 有两个相同的算子 , 这表明 F 对含有某些自变量的 导数项求偏导数后 , 要再对这些自变量求偏导数 , 即
两组对自变量求偏导数的自变量相同 .另一个规律
是关于求和项中各项的符号 , 每作一次分部积分 , 被
积函数就改变一次符号 , 这样奇次积分取负号 , 偶次
(7)和式(8)可以分别写成
S
∑ (-1)isDi sFDis u =0 ,
s =0
(9 )
S
∑ (-1)isDis
s =0
F Di su
=0
.
(10)
需要指出的是 , 在实际应用中 , u 对某几个自变
量的偏导数往往会以不同的形式出现多次 , 这里的
总项数 S 应正确理解为 u 对自变量偏导数的不同 组合数 .
第 26 卷 第 8 期 2006 年 8 月
北 京理 工大 学学 报 T ransactions of Beijing Institute of T echnolog y
文章编号 :1001-0645(2006)08-0749-04
论完全泛函的变分问题
Vol.26 No .8 Aug .2006
uk(x 1 ,
x2 ,
…,
x m )∈
C
2
n
k
,
k
=1 ,
2,
…, l , 泛函所依赖的函数 uk 在泛函中对自变量的最
高阶导数是 nk , 则完全泛函
∫ J [ u1 , u2 , … , ul] =
F
Ψ
(x
1
,
…,
xm
,
u1
,
D
i
1
1
u1
,
… , Di s1 u 1
,
…,
D
n
1
u1
,
…,
uk
,
Key words :calculus of variations ;com plete functio nal ;variational problems ;partial dif ferential operator ;complete Euler equation set
考察最简泛函
∫x
J[ y] = 1 F(x , y , y′)d x ,
x
i1 1
x
i2 2
…
x
im m
,
(3 )
该偏微分算子简称算子 .其中 is =i 1 +i2 +…+i m , 且 is , i 1 , i 2 , … , im 都是整数 .若式(3)只含有一个 自变量 , 则偏微分算子化为常微分算子 .这里 , 不排
斥 is 所表示的某些自变量是零的情形 .若某自变量 的上标是零 , 则表示没 有对该自变量 求偏导数 , 例
老大中
(北京理工大学 机电工程 学院 , 北京 100081)
摘 要 :研究变分法中依赖于任意个自变量 、任意个多元函数和任意阶多元函数偏导数的完全泛函的变分问题 ;提 出并证明了完全泛函的变分问题的定理 , 采用偏 微分算子 , 给出了完全欧拉方程组 .该方程组涵 盖了变分问题的各 种欧拉方程 .通过两个算例验证了完全欧拉方程 组的正确性 .
s =1
δu d x1d x 2 …dx m =0 .
(1 1)
式中 , 由 泛函取极值的必 要条件 δJ =0 , 应分 别有
S
∑ Bs =0 和积分项等 于零 , 而 根据变分法的 基本
s =1
引理 ,δu 是任取的 , 积分项中只能是括号内的部分 等于零 , 于是可得到式(7)~ (10).证毕 .
收稿日期 :2006 01 06 作者简介 :老大中(1957 —), 男, 副教授 , E-mail :laodazhong @t si nghua .org .cn .
7 50
北 京 理 工 大 学 学 报 第 26 卷
欧拉方程(2)的微分方程组 , 就在一定程度上解决了 具有此类结构的泛函的变分问题 .
Ψ的变动部分 δΨ与 Ψ分离出来 , 对区域 δΨ的积
分采用中值定理 , 然后把它和含有边界项的积分归
并到一起 , 再利用 δJ =0 的条件和 δu 的任意性 , 式
(7)~ (10)的成立就可得到证明 .
定理 2 设 Ψ是 m 维域 , 自变量(x 1 , x2 , … ,
x m)∈
Ψ, 函数
积分取正号 , 这个规律可通过 is 表示出来 , is 是偶 数取正号 , is 是奇数取负号 .掌握这两个规律对上 述公式的应用会带来很大方便 .
根据变分法的理论 , 无论泛函的积分区域是否
固定 , 欧拉方程都相同 , 故无论积分区域是否固定的
泛函的变分问题 , 式(7)~ (10)都成立 .事实上 , 对 于待定边界的变分问题 , 其证明方法是把积分区域
么
D
i
s
u
=D 0 u
=u
,
即一个函数对自变量求零阶偏
导数 , 就是没对其求偏导数 , 也就是该函数自身 .
定理 1 设 Ψ是 m 维域 , 自变量(x 1 , x2 , … , x m)∈ Ψ, 函数 u(x 1 , x 2 , … , x m)∈ C 2n , 泛 函所依
赖的函数 u 在泛函中对自变量的最高阶偏 导数是
证明 对泛函(6)取一阶变分 , 并从中取出被积
函数变分的第
s
项
F
i
D
su
δD
is
u
, 该项具有
is
阶偏导
数 , 利用变分与求导可以交换次序的性质 , 对其作分
部积分 i s 次 , 有
∫Ψ-x 1
∫F Ψ
Di
su
δD
isu
d
x
1
d
x
2
…d xm
=
FD isuδ
u i -1+… +i
1
m
x i11 -1 … x imm
作者研究与完全泛函的变分问题 , 并导出了相 应微分方程组的具体表现形式 .
1 完全泛函的极值函数定理
首先给出并证明依赖于任意多个自变量 、一个
多元函数及该函数任意阶偏导数的泛函极值函数定
理 , 然后利用这个定理给出并证明完全泛函的极值
函数定理 .为此 , 引入偏微分算子
Dis =
i 1 +i2 +… +im
ximm -1
δ
u xm
xm xm
=xm1
d
=xm 0
x
1d
x2
…
∫ d x m -1 +(-1)is
Ψ
x
i i 11
Fs Di …
su
x
i δu
mm
d
x
1
d
x
2
…d xm
=
∫ Bs +(-1)is
D
Ψ
i
sF
i
D
su
δu
d
x 1d
x2
…d
xm
.
第 8 期 老大中 :论完全泛函的变分问题
=0
.
(8 )
式中 , 大写的 S 表示被积函数 F 中 u 后面 u 的偏导 数项的总项数 , 小写的 s 表示 u 后面 的第 s 项 , 且
s =1 , 2 , …, S . 根据 前面 的 表示 方 法, 如 果 D0u = u , 则
D 0 FD 0 u =D 0F u =Fu .如果把 Fu 看作第 0 项 , 则式
如 , m =3 且 i 5 =i 1 +i 2 +i 3 =3 +0 +2 =5 , 此时 , 算
子并不是写成
5
Dis
=
x
3 1
x
0 2
x
2 3
,
(4 )
而是写成
5
D
i
s
=
x
3 1
x
2 3
.
(5 )
即如果算子中不含对某自变量的偏导数 , 则算子中
对该自变量的偏导数就可略去不写 .如果 is =0 , 那
理论的产生来源于实际需要 , 然而它一经产生 , 就会按自身的规 律发展 , 并超越实际需要 的限 , 即自变量 x 、未知函数 y 及其导数 y′都不止一 个 , 而是一个集合 , 该集合可以含有任意个自变量 、 任意个多元函数和任意个高阶偏导数 .为研究问题 方便起见 , 可以把具有这种结构的泛函称为完全泛 函 .对于完全泛函的变分问题 , 如果能建立类似于
751
其中 Bs 表示与边界积分有关的各项之和 . 除 u 项外 , 将被积函数的一阶变分的其他所有
项都按上面方法去做 , 将含有 u 的偏导数的变分都
化成 δu 的形式 , 并将所有项求和 , 其中包括 Fuδu 项,得
∑ ∫ ∑ S
S
δJ =
s =1
Bs +
Ψ
Fu +
(-1)isDisFD is u
Abstract:T he variational problems of t he complete functional in calculus of v ariations are studied deperding on the arbit rary arguments , arbit rary multivariable functions and arbit rary-order partial derivat ives of multivariable f unctions .The theorem of the variational problems of the complete functional is proposed and proved .T he complete Euler equat ion set is obtained throug h the int roduction of t he partial diff erential operato r .The complete Euler equatio n set cont ains all kinds of Euler equations of the variational problem s.T he correctness of the complete Euler equation set is verif ied wit h tw o functional examples .