当前位置:文档之家› 第五章2014典型环节

第五章2014典型环节

第 5章
频率法
频域分析法: 用频率响应(特性)来分析系统的方法。 Frequency Domain Response Analysis
二〇一四年十一月
2014-11-15 第五章 频率法 1
时域分析法——解析分析法
1)以单位阶跃响应为基础的分析方法。具有直观、明确 的物理意义。 2)对于高阶或较为复杂的系统难以求解和定量分析。 3)是一种基于数学模型(传递函数)的分析方法。 4)参数的全局特征不明显。在某一参数连续变化对系统
常用的表示方法:
1. 幅相频率特性(奈氏图) 2. 对数频率特性(Bode图)
[极坐标或直角坐标]
[对数坐标] [对数坐标]
3. 对数幅相特性(尼氏图)
2014-11-15
第五章 频率法
20
1. 幅相频率特性(奈氏图)
在极坐标系或直角坐标系中,以频率ω为参变量, 绘制W(jω)的幅频特性A(ω)和相频特性ϕ(ω)之间关系 的曲线。
指导控制系统的设计; 2)频率特性可通过试验获得; 3)以图解分析、设计为主;
简单迅速地判断出某环节或参数对系统性能的影响,
4)可研究噪声问题,可设计出能有效抑制噪声的系统。
2014-11-15 第五章 频率法 4
主要内容
• 频率特性的基本概念 • 频率特性的表示方法
• 典型环节的频率特性
• 系统开环频率特性的绘制
t
jt
xc (t ) A01e
A01 W (s)
A02e
jt
X r X rW ( j ) ( s j ) s j s2 2 2j
Xr A02 W ( s ) 2 ( s j ) 2 s
2014-11-15
X rW ( j ) s j 2j
2014-11-15 第五章 频率法 24
半对数坐标:一个轴是分度均匀的普通坐标轴,另一个轴是
分度不均匀的对数坐标轴。该图中的纵坐标轴(y轴)是对数 坐标。在此轴上,某点与原点的实际距离为该点对应数的对
数值,但是在该点标出的值是真数。
2014-11-15
第五章 频率法
25
lg W ( j ) lg A() j0.434 ()
A( ) 1/ R 1 (T )
2
, T L/ R
arctan T
幅频特性
arctan
2014-11-15
L
R
相频特性
第五章 频率法 10
(1)频率特性定义
线性系统(或环节)在正弦输入下,稳 态时,输出量与输入量之比叫做系统(或环节) 的频率特性。
传递 函数
系 统
频率 特性
s j
2014-11-15 第五章 频率法 18
(4)频率特性的求取
a、根据传递函数求取 用s=j代入系统的传递函数,即可得到。
即: W ( j ) W ( s)
s j
b、通过实验的方法直接测得
2014-11-15
第五章 频率法
19
5.2 频率特性的几何表示方法
面上,以对数幅值作纵坐标(单位为分贝)、以 相位移作横坐标(单位为度)、以频率为参变量。 这种图称为对数幅—相频率特性,也称为尼柯尔 斯图或尼氏图。
2014-11-15
第五章 频率法
31
5.3 典型环节的频率特性
• 1. 比例环节
• 2.
• 3.

惯性环节
积分环节
• 4.
2014-11-15
第五章 频率法
8
例5.1 R-L串联回路
正弦输入 u U sin t
同频输出 i I sin t
U e jt U
Z R j L
U I R j L U R 2 ( L) 2 e j ( t )
arctan
X c ( s) 传递函数: W (s) X r ( s)
频率特性与传递函数之间的关系:
W ( j ) W ( s )
2014-11-15
s j
第五章 频率法
17
微分方程
时域 复数域 频域
线性定常系统的数学模型
传递函数 频率特性 微分 方程
到此已给 出了线性 定常系统 数学模型 的三大表 示体系。
2014-11-15 第五章 频率法 12
(3)频率特性与传递函数的关系
X c (s) W (s) X r (s) K g ( s zi )
i 1 m
(s p )
j 1 j
n
xr (t ) X r sin t
输出的拉氏变换为:
X r (s) X r

s2 2
φ(ω)为复数频率特性的辐角或相位,即相频特性。
2014-11-15 第五章 频率法 22
当 : 0 变化时,矢量W j 终端所描绘的曲线称为 该环节的幅相频率特性 或奈氏图。
2014-11-15 第五章 频率法 23
2. 对数频率特性( Bode图)
在半对数坐标中,表示频率特性的对数幅值 20lgA(ω)与对数频率lgω,相角()与对数频率 lgω之间关系的曲线图称为对数频率特性或Bode图。
与幅频特性相同。
表示相位移 的均匀 分度,单位:弧度或度。


(rad/s)
900
2014-11-15
第五章 频率法
29
注意:
对数幅频特性和对数相频特性(两张图)
和起来称为对数频率特性,又称为Bode
图。
2014-11-15
第五章 频率法
30
3. 对数幅相特性(尼氏图)
将对数幅频特性和对数相频特性绘在一个平
A01 A02 A1 X c (s) W (s) X r s s j s j s p1
2014-11-15
An s pn
第五章 频率法 14
xc (t ) A01e
jt
A02e
jt
A1e
p1t
Ane
pnt
稳态时


熟练掌握系统稳定裕量的物理含义和计算方法;
建立开环频率特性和系统性能指标之间的对应关系, 能够定性地分析系统的性能;
第五章 频率法 6
2014-11-15
5.1 频率特性的基本概念
1. 频率特性
给稳定的线性系统输入一个正弦信号,系统的稳态
输出也是一个与输入信号同频率的正弦信号,其幅值
和相位随输入信号频率的变化而变化。 输出
2014-11-15
第五章 频率法
21
两种形式之间的转换
W ( j ) P 2 ( ) Q 2 ( ) e j ( ) A( )e j ( )
式中: A( )
P 2 ( ) Q 2 ( )
Q ( w) P ( w)
f (w) = arctan
A(ω)为复数频率特性的模值或幅值,即幅频特性。
输入
线性系统
Xrsinωt
2014-11-15
Xcsin(ωt+φ)
第五章 频率法 7
设系统结构如图,由劳斯判据知系统稳定。
保持幅值不变,增大频率,输入输出曲线如下: 给系统输入正弦信号,
给稳定的线性系统输入一个正弦信号,其稳态 结论: 输出是与输入同频率的正弦信号,称为频率响 应。其幅值随ω而变,相角也是ω的函数。 ω=1 ω=2 ω=2.5 ω=4 Ar=1 ω=0.5
decade )
第五章 频率法
27
为什么要采用对数坐标?
(1)在研究频率范围很宽的频率特性时,可缩小比例 尺,在一张图上表示出低、中、高频段的特性, 便于分析。
(2)大大简化频率特性的绘制。因为系统往往是由多 个环节串联构成的,设频率特性为:
W1 j A1 e
j1
2014-11-15
L
R
第五章 频率法 9
频率特性: U 作为输入量,I 作为输出量
1/ R 1/ R j j 1 I e A ( ) e W ( j ) 2 1 T j R j L 1 ( T ) U
物理意义: 给出了不同频率下电路传递正弦信号的能力。
• 用频率法分析控制系统的稳定性
• 系统暂态特性和开环频率特性的关系 • 闭环系统频率特性 • 系统暂态特性和闭环频率特性的关系
2014-11-15 第五章 频率法 5
学习重点

了解频率特性的基本概念,掌握不同的表示方法; 了解典型环节的频率特性; 熟练掌握波德图和奈氏图的绘制方法; 理解和掌握奈氏稳定判据,会用奈氏判据判断系统 的稳定性;
调整系统的参数来获得预期结果。它弥补了时域分
析法中某一参数变化时特征不明显的不足。特别适 用于高阶系统的分析求解。 在数学模型问题、高频噪声问题等方面仍然存 在不足。
2014-11-15 第五章 频率法 3
频域分析法
基于频率特性和频率响应对系统进行分析的方 法。图解分析和设计的方法。
频域分析法的特点: 1)工程方法,根据频率特性可间接揭示系统的性能,
影响的分析无能为力。
5)系统的性能不满足技术要求时,无法方便地确定应如 何调整系统的参数来获得预期结果。 6)对工程中普遍存在的高频噪声干扰的研究无能为力。
2014-11-15 第五章 频率法 2
根轨迹法——图解分析法
根轨迹法是一种快速、简洁而实用的图解分 析法。由开环的零极点来研究闭环极点(闭环系统) 的方法。它根据图形的变化趋势即可得到系统性能 随某一参数变化的全部信息,从而可以获得应如何
一般不考虑0.434这个系数,而只用相角位移本身。 通常将对数特性绘在以10为底的对数坐标中,则
相关主题