自由度的计算(经典PPT)
计算平面机构自由度时应注意的事项(2/8)
F=3n-(2pl+ph) =3×5-2×7 -0 =1
计算平面机构自由度时应注意的事项(3/8)
(2)同一运动副 如果两构件在多处 接触而构成运动副,且符合下列情况者, 则为同一运动副,即只能算一个运动副。
1)移动副,且移动方向彼此平行或 重合;
2)转动副,且转动轴线重合; 3)平面高副,且各接触点处的公法 线彼此重合。
No Image
No Image
四、机构
机构:具有确定相对运动并传递运动和力的运动链。 在运动链中,如果将某一个构件加以固定; 而让另一个或几个构件按给定运动规律相固定构件运动时
如果运动链中其余各构件都有确定的相对运动,
则此运动链成为机构。
2
C
B
1
3
4
A
D
机构的组成(14/14)
4.机构 具有固定构件的运动链称为机构。 机 架 ——机构中的固定构件。
闭式运动链(简称闭链) 开式运动链(简称开链)
2
3
1
4
2 3
1 4
平面闭式运动链 空间闭式运动链
23
1
4
平面开式运动链
4
3
5
2 1
空间开式运动链
三、运动链
运动链:两个或两个以上的构件通过运动副联接而构成的系统。 开式运动链:运动链的各构件未构成首末封闭的系统
闭式运动链:运动链的各构件构成首末封闭的系统
移动副
y
1
x
2
自由度数目 1
约束特点: Y方向移动 ,z方向转动
约束数目 2
机构的组成(7/14)
高副 两个独立相对运动。引入1个约束, 保留2个自由度
高副
n N t no2 t
2
1
Im 1 age
约束特点:n方向移动
自由度数目 约束数目
2
1
机构的组成(13/14)
3.运动链
构件通过运动副的连接而构成的相对可动的系统。
构件与零件的区别: 构件是运动单元体 零件是加工制造单元体
构件——运动单元体。
零件——制造单元体。
构件是由一个或若干个零件组成刚性系统。
固定构件——机架
构件
No
Image 活动构件
主动件 从动件
主动件(或原动件。)
作用有驱动力(矩)的活动构件称为
输入运动或动力的主动件称为输入件。 输出运动或动力的从动件称为输出件。
内N燃o机 Image
键 轴
齿轮
机构的组成(2/16)
空间运动: 6个自由度 一个自由构件
平面运动: 3个自由度
2.运动副
机构的组成(3/16)
运动副 是两构件直接接触而构成的可动连接;
运动副元素是两构件参与接触而构成运动副的表面。
约束 两构件上组成运动副时相对运动受到限制,这种对 独立运动的限制称约束
No Image
1
1
1
2
2
2
转动副
No Image
1
1
1
2
2
2
运动副——高副
No Image
No Image
转动副 一个独立相对运动。 引入2个约束,保留1个自由度
机构的组成(5/16)
转动副
y
x
2 1
约束特点: x,y方向移动
自由度数目 约束数目
1
2
移动副
机构的组成(6/16)
一个独立相对运动。引入2个约束, 保留1个自由度
复合铰链:A(2)
此机构能动,须给定一个原动件
5)
b) n=5 pl=6 ph=2 F=3n-(2pl+ph-p’)-F’ =3*5-(2*6+2)=1
E、B处为局部自由度
6)
n=5 pl=7 ph=0 F’=0 F=3n-(2pl+ph) =3*5-(2*7+0) =1
图上运动重复部分为虚约束
No Image
虚约束——机构中那些二对、构件虚间约的束相对运动不起独立限制
作用的重复约束。或称消极约束。
机构的虚约束
机构的虚约束2
B
2E
C
1 A5
4
3
F
D
AB CD EF
F=3×4-2×6=0 ? F=3×3-2×4=1
二、虚约束——种类
No Image
1.机构中联结构件与被联结构件的轨迹重合
B4
AD=BD=DC
第二章 平面机构的运动简图及其自由度
运动副及其分类 平面机构运动简图 平面机构的自由度
2020/9/10
返回
主要内容及目的是:
研究机构的组成及机构运动简图的画法; 了解机构具有确定运动的条件、进行机构自由度计算; 研究机构的组成原理及结构分类。
1.构件
§2-2 机构的组成
• 机器中每一个独立的运动 单元体称为构件
计算平面机构自由度时应注意的事项(5/8)
例2-8 滚子推杆凸轮机构 解 滚子绕其轴线的转动为一个局部自 由度,在计算机构自由度时,应将 F′从计算 公式中减去,即
F=3n-(2pl+ph)- F′ 故凸轮机构的自由度为
F=3×3-(2×3+1)-1=1
3.要除去虚约束
虚约束是指机构中某些运动副带入的对 机构运动起重复约束作用的约束,以 p′表 示。
1
No Image
C 4
5
A
D
E G
B
D
67
E
C
No Image
A
O
局部自由度
F H
虚约束
F=3×7-2×10=1
F=3×6-2×8-1=1
机构具有确定运动,因为主动件数等于机构自由度数F 。
3)内燃机机构 F=3n-(2pl+ph)
=3×6-2×7-3 =1
4)鄂式破碎机 F=3n-(2pl+ph)
平面运动链的自由度计算
机构自由度:机构中各活动构件相对于机架的可能独立运动 的数目。
讨论:
C
单个平面活动构件的自由度:F=3 3
两构件以运动副相联后自由度: D 4
B2 A1
低副(以转动副为例) 联接前:F=3×2=6
能动吗?
联接后:F=3×2-2×1=4
高副(以凸轮副为例)
联接前:F=3×2=6 联接后:F=3×2-1×1=5
4)凸轮机构
F=3n-(2pl+ph) =3×2-2×2 -1 =1
计算平面机构自由度时应注意的事项
1.要正确计算运动副的数目 (1)复合铰链 两个以上构件同时在一处以转 动副相联接就构成了复合铰链。
由m个构件组成的复合铰 链,共有(m-1)个转动副。
1
复合铰链数=构件数-1
1
2
3
2
3
一、复合铰链
No Image
3)平面运动副包括
和
,前者包括
和
。
4)平面低副引入 个约束,保留 个自由度;
平面高副引入 个约束,保留 个自由度。
5)平面机构具有确定运动条件是
。
2.机构自由度计算(指出复合铰链、局部自由度及虚约束,
1)
并判断确定运动条件)
复合铰链:C(3) 、 A(2)
n=7 pl=10 ph=0
F=3*7-(2*10+0)=1
原动件 ——按给定已知运动规律 独立运动的构件;常以转向箭头表示。
2 从动件
3 4
1原动件
机架 平面铰链四杆机构
从动件 ——机构中其余活动构件。原动件 其运动规律决定于原动件的运动规律
2
和机构的结构及构件的尺寸。
1
机构常分为平面机构和空间机构 两类,其中平面机构应用最为广泛。
机架
3 从动件
4
空间铰链四杆机构
一、平面运动链的自由度计算公式
No Image
n——活动构件数 Pl——低副数 Ph——高副数
分析: 两杆(如门、风扇)
F=3×1-2×1=1 F=原动件数,∴运动确定
§2-5 机构自由度的计算
平面机构自由度计算公式:
F = 3n - 2Pl - Ph
F - 机构自由度; n - 机构中活动构件数 P - 机构中低副的数目
例2-9 平行四边形四杆机构
F=3n-(2pl+ph)- F′ =3×3-(2×4+0)-0=1
计算平面机构自由度时应注意的事项(6/8)
当增加一个构件5和两个转动副E、F,且BE∥= AF,则 F=3n-(2pl+ph)- F′ =3×4-(2×6+0)-0=0
原因:构件5 和两个转动副E、F 引入的一个约束为虚约束。
?
F=3×3-2×3-2=1
A 1
3D
4.在机构整个运动过程中,其中某两构件上两点之间的距离
ห้องสมุดไป่ตู้
始终不变。
B2
1 5
A
C D3
AB=CD, BC=EF, BE=CF,
F=3×4-2×6=0 ? F=3×3-2×4=1
4
AE=DF。
F
E
二、虚约束——种类
5.机构中,不影响运动的对称部分。
No Image
l P - 机构高副数目
h
举例 1)铰链四杆机构 F=3n-(2pl+ph)
=3×3-2×4 -0 =1
2)铰链五杆机构 F=3n-(2pl+ph)
=3×4-2×5 -0 =2
机构自由度的计算(2/7)
2
3
1
4
3
2
4
1
5
3)曲柄滑块机构
F=3n-(2pl+ph) =3×3-2×4 -0 =1