一种基于MATLAB 的瑞利信道仿真方法研究王志杨1, 刘金龙2(1.安徽电子信息职业技术学院信息工程系,安徽蚌埠 233030;2.淮海工学院电子工程学院,江苏连云港 222005)摘 要:瑞利信道的仿真在无线通信系统的仿真中具有重要的意义.文章首先给出瑞利信道的概念,并参照Jakes 模型,采用MATLAB 软件,仿真出了多径瑞利信道.为了得到每径独立的瑞利分布,提出了衰落计数器的概念.通过调整不同路径波形衰落计数器的起始时间达到每径独立分布,且计算复杂度较低.最后通过评估程序证明了仿真方法的正确性.该方法为研究不同通信系统在瑞利信道下的相关性能奠定了基础.关键词:瑞利信道;信道仿真;Jakes 模型;多径传输中图分类号:TN914.3 文献标识码:A 文章编号:1001-2443(2012)03-0234-06引 言对于基站到移动台这样一个发送接收系统来说,理想的无线信号传播(自由空间传播模型)是由基站发送的电磁波经过一定衰减达到移动台,我们可以理解为信号沿着基站到移动台的直线传播.虽然,电磁波实际上是以球面波的形式向周围360度辐射,但是只有沿着直线传播的信号才能抵达移动台,这条路径称为直射路径[1].而对于实际的大气传播环境,大气中包含着许多的小颗粒(悬浮物),或者由于建筑物和树木阻挡,从基站出发,沿着非直射方向传播的电磁波可能经过一系列的反射、散射、衍射后而抵达接收端,我们把图1 信号的多径传播Figure 1 The multipath transmis s i on of signal这种路径称为散射路径(见图1).和直接波相比,后到达的波形称为延迟波.由于每一条散射路径经历的路程都不一样,这样,接收波相位各不相同.如果恰巧各个相位相同,多个信号进行叠加会导致总的信号增强,而如果相位互不相同,各个信号叠加则会互相抵消,导致总的信号强度降低.这样,我们把由于信号经过了多收稿日期:2011-12-01基金项目:安徽电子信息职业技术学院院级研究课题ADZX1007).作者简介:王志杨(1982-),男,回族,安徽蚌埠人,硕士,讲师,主要研究方向:OFDM 、3G 移动通信、信道建模.第35卷3期2012年5月 安徽师范大学学报(自然科学版)Journal of Anhui Normal University (Natural Science)Vol.35No.3M ay.2012个路径而抵达接收端导致信号强度发生随机变化的现象称为多径衰落.多径衰落增加了接收信号的误码率.通常,为了消除多径衰落对接收信号所造成的不良影响,需要做一些补偿措施[2].1 瑞利信道的基本概念参考图1,式(1)为基站发出信号的延迟波,f c (H z)为发出时频率,H n 为附加角度.r n (t)=Re [e n (t)exp j (2P f c t )](1)这里,Re 给出附加波复包络的实部,n 为附加波编号,j 是虚单位.e n (t)由式(2)给出,L n 为传输路径长度(m ),v 为移动台的速度(m /s ),K 为波长(m ).e n (t )=R n (t)exp j (2P (L n -vt cos H n )K+U n )=x n (t)+jy n (t)(2)R n 和U n 是附加波n 的包络和相位,x n (t)和y n (t)是e n (t)同相和正交分量,附加波n 由多普勒效应引起的多普勒频移为f c =v cos H n /K(H z)[3,4]. 移动台收到的波形是以上所提到的附加波的合成,当波的数目为N 时,接收波记为r (t):r (t)=E N n =1r n (t)=Re [(E N n =1e n (t))ex p j (2Pf c t )]=Re [(x (t)+j y (t))(cos2P f c t +j sin2P f c t)]=x (t)cos2P f c t -y (t)sin2P f c t(3) x (t )和y (t)表达式如式(4)、式(5)所示:x (t )=E N n =1x n (t )(4) y (t )=E Nn =1y n (t )(5)x (t )和y (t)是归一化随机过程.当N 足够大时,其均值为0,方差为R .令x =x (t ),y =y (t),可以得出x (t )和y (t)的联合概率密度函数:p (x ,y )=x 2+y 22P R 2exp (-x 2+y 22R 2)(6) 此外,也可以用接收波的幅度和相位表示r (t):r (t)=R (t)cos (2P f c t +H (t ))(7)R (t)和H (t)为:R (t)=R =x 2+y 2(8)H (t)=H =tan -1[y /x ](9)通过使用变量代换,p (x ,y )表示为p (R ,H ):p (R ,H )=R 2P R 2exp (-R 22R 2)(10)对H 从0到2P 积分,可得概率密度函数p (R ):p (R )=R R 2exp (-R 22R 2)(11)对R 从0到]积分,可得概率密度函数p (H ):p (H )=12P(12)式(11)和式(12)表明信号衰落的包络变化服从瑞利分布,相位变化服从均匀分布[5].2 Jakes 模型下瑞利信道仿真根据文献[6]提供的Jakes 模型,对于附加波总数为N ,多普勒频率为f d ,等效低通环境下的瑞利衰落表23535卷第3期 王志杨,刘金龙: 一种基于MA T LA B 的瑞利信道仿真方法研究达式为式(13).r(t)=x(t)+jy(t)=[2N1+1E N1n=1cos(P nN1cos{2P f d cos(2P nN)t}+1N1+1cos(2P f d t)]+j2N1E N1n=1sin(P nN1)cos{2P f d cos(2P nN)t}N/2是一个奇数,N1为:N1=12(N2-1)(14)这里,如下关系要满足:E[x2I(t)]=E[y2Q(t)]=1 2E[x I(t)y Q(t)]=0(15)程序1根据式(13)仿真瑞利信道.其中给出两种衰落形式,平衰落和频率选择性衰落.平衰落是相对频率选择性衰落来说的.平衰落是指一个信号经过信道后保持频谱形状不变,仅幅度发生变化.如果一个信号经过传输后其频谱发生了变化(幅度和相位都发生变化),则认为是经历了频率选择性衰落.是否平坦衰落的关键是看是否会接收到多个信号.在前面对衰落的描述中,已经知道衰落是由于信号经过多路径传输引起的,这里面涉及到路径是否可分辨的概念.什么是可分辨呢?可分辨是相对于码元的周期来说的,假设一个码元的持续时间是0.5L s,接收端接收到了来自多个路径信号的叠加,来自不同路径的信号肯定会有不同的延时.然而,如果这些信号的相对延时比较小,例如小于一个码元甚至半个码元,因为数字信号的接收总是以码元的周期进行判决的,这样,我们就只看到了一个信号,只是这个信号的强度发生了变化,如果多条路径相位接近,则信号增强,反之信号衰减,也就是前面说的衰落.这里进一步将此定义为平衰落[7,8].如果来自多条路径的传输时延较大,大于一个或者多个码元的周期,前一个码元的信号副本就会叠加到后面的码元上,造成所谓的码间干扰,这种情况下称之为非平坦衰落,或频率选择性衰落.码间干扰对数字通信来说是坏事情,需要想办法克服码间干扰(也称为抗多径).可分辨是相对于码元的周期来说的,对于一个特定时延的来说,码元周期越长,那么就越不可分辨,这说明速率低的信号更有可能经历平衰落,而高速信号经历频率选择性衰落的概率更大.这也是OFDM抗多径的基本原理,OFDM将高速的数据流变为多个低速的数据流在不同的频带进行传输,将原本看来是频率选择性的信道等效为多个平坦的子信道[9].3多径传输环境仿真以上完成了一条主径的瑞利仿真.下面将具体阐述如何仿真多径瑞利信道传输环境.在多径传输环境下直接波和延迟波的关系模型见图2.显然,直接波和延迟波的平均功率有固定的比率.所以,只要给出延迟波相对于直接波的相对功率和相对延迟时间,就可以仿真出多径传输环境,流程图见图3.具体的仿真过程为,首先将输入的信号按照参数延迟.然后,瑞利衰落加入每径的信号中.当所有的延迟波都经历以上过程后,再按照功率的相对大小进行累加[10].程序见程序2和程序3.在程序2中,输入参数有:idata(输入同相信道的数据),qdata(输入正交信道的数据),itau(相对延迟时间),dlvl(相对功率),tstp(最小分辨时间,码元周期),nsample(仿真时采样点数),itn (每径衰落时的衰落计数器),nl(直接和延迟波总数).输出数据:iout(同相信道输出数据),qout(正交信道输出数据).程序3是程序2子程序,用来对输入信号进行时间上的延迟.假设某次观察时间是100L s,最小分辨时间是0.5L s.三径延迟波相对直接波平均功率分别衰减20dB,30 dB,35dB.时间分别延迟2L s,3L s,4L s,则多径衰落仿真参数设置如下:236安徽师范大学学报(自然科学版)2012年图2 多径衰落信道的构成Figure 2 The configuration of multipath fadingchannel图3 仿真多径瑞利信道的流程图Figure 3 Th e flow chart to simulate the Raylei gh fading channeltstp =0.5.*10.^(-6);itau =[0floor(2.0*10.^(-6)/tstp)floor(3.0*10.^(-6)/tstp)floor(4.0.*10.^(-6)/tstp)]=[0,4,6,8];dlvl =[0,20,30,35];nsam p =100.*10.^(-6)/tstp =200;nl=4;通常,瑞利分布要求在每径都是相互独立的.如果每径仿真时起始时间都相同,则每径分布都相同.这种现象可用图4表示.图4由于每径衰落同时产生,导致直接波和延迟波衰落波形完全相同.因此,需要通过一定的技术使每径都能够独立分布[11].有多种方法产生独立衰落,程序1中使用衰落计数器counter.Counter 设置每径衰落的起始时间.图5中显示了通过设置衰落计数器counter 使直接波和延迟波的衰落起始时间都不同,每径衰落后的波形也必将不同,这样就可以获得独立分布的瑞利衰落环境.4 仿真方法评估对于程序2,使用程序4对其进行评估.程序中共4径波形,衰落计数器counter 向量大小等于延迟波功率向量dlvl 和延迟波延迟时间向量itau 大小,均为4.然后设置好counter 的初始值,就可以进行仿真.衰落计数器counter 在每次仿真循环后通过加入itnd0来更新仿真起始时间.如果基于最小分辨时间是0.5L s 和观察时间是100L s,每次循环后应该有200个点被加入.这样更新时间itnd0等于观察时间,见图6(a).当两个时间相等的时候,由于更新时间较短,可以在连续变化的信号水平下评价传输性能.但是由于信号衰落服从瑞利分布需要多次循环才能达到,要求较长仿真时间.另一方面,更新时间也可以调整为大于观察时间,见图6(b).当更新时间大于观察时间时,可以用较少次的循环实现瑞利衰落.然而,仿真结果可能不一定完全精确.程序4适当增加了更新时间23735卷第3期 王志杨,刘金龙: 一种基于MA T LA B 的瑞利信道仿真方法研究(200L s,400个点),使更新时间大于观察时间(100L s,200个点),来对传输性能进行简单评估.图4 直接波和延迟波衰落起始时间相同(a)仿真直接波起始时刻(b)仿真延迟波起始时刻Figure 4 Signal fluctuation by a fading simulator w hen the starttime to generate a direct and a delayed w ave is the same:(a)generated signal fluctuation for a direct wave(b)generated signal fluctuation for a delayed wave.图5 直接波和延迟波衰落起始时间不同(a)仿真直接波起始时刻(b)仿真延迟波起始时刻Figure 5 S i gnal fl uctuation by a fading simulator w hen th e start time to generate a direct and a delayed w ave i s different:(a)generated signal fluctuation for a direct wave (b)generated signal fluctuation for a delayed wave.图6 更新时间和观察时间的关系 (a)更新时间=观察时间(b)更新时间>观察时间Figure 6 Relationship betw een the observation time and the update time:(a)observation time =update time an d (b)update ti m e>observation time评估程序采用等效低通环境下基带信号的传输进行.首先对信号进行BPSK 调制,然后将信号进行4个路径的瑞利衰落,在接收端进行BPSK 解调,并计算收发两端数据的误码率[12].经仿真后得到如下结论:多普勒频率为200Hz 时,1000次仿真循环后,在平衰落环境下误码率约为238安徽师范大学学报(自然科学版)2012年3.00@10-3.在频率选择性衰落环境下误码率约为4.90@10-1.在自然环境下,通过测量BPSK 的调制数据,发现误码率和仿真结果基本吻合,说明仿真方法正确,可以采用.5 结束语瑞利信道的仿真在无线通信系统的仿真中具有重要的意义.本文在前人工作的基础上,参照Jakes 模型,提出了一种有效的仿真多径瑞利信道的方法.在仿真中使用衰落计数器设置不同路径衰落起始时间,达到每径独立分布,且计算复杂度较低.仿真结果表明和自然环境下实测数据误码率基本吻合,仿真方法正确.该方法为研究不同通信系统在瑞利信道下的相关性能奠定了基础.参考文献:[1] RAPPPORT T S 著.蔡涛译.无线通信原理与应用[M].北京:电子工业出版社,1999:123-140.[2] SAM PEI S.Applications of digital w ireless technologies to global w ireless communications [M].Upper Saddle River,NJ:Prentice Hall,1997:146-168.[3] YOUNG D J,BEAULIEU N C.The generation of correlated Raylei gh random varieties by inverse discrete Fourier transform [J].IEEE T rans onCommunication,2000,48(7):1114-1128.[4] 陈光平,王先明,祝恒江.多普勒效应的系统研究[J].安徽师范大学学报:自然科学版,2006,29(4):348-351.[5] 郭大伟.论随机过程中最大似然估计的一致性[J].安徽师范大学学报:自然科学版,2007,30(3):220-224.[6] JAKES W C.M icrowave mobile communications [M].New York:IEEE Press,1994:12-15.[7] PATEL C S,STU BER G L,PRATT T parative analysis of staits tica1model s for the simulation of Raylei gh faded cellular channels [J].IEEE T rans on Commun,2005,53(6):1017-1026.[8] M ATTHIAS P 著.陈伟译.移动衰落信道[M].北京:电子工业出版社,2009:20-50.[9] 王文博,郑侃.宽带无线通信OFDM 技术[M].北京:人民邮电出版社,2003:108-120.[10] 代光发,陈少平.快变衰落信道的M ATLAB 仿真及其应用[J].系统仿真学报,2005,17(1):214-237.[11] 张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000:86-102.[12] PROAKIS J G.Digital communications,3rd ed.[M].New York:M cGraw-H il l,1995:250-262.Research on a Method for Simulating Rayleigh Channel Based on MATLABWANG Zh-i yang 1, LIU Jin -long2(1.Department of Information Engi n eering,Anhui Vocational College of Electronics &Information T echnology,Bengbu 233030,China 2.S chool ofElectronic Engi n eering,Huai Hai Institute of Technology,Lianyungang 222005,Ch i na)Abstract:Sim ulating Rayleigh channel is very important in w ireless communication system simulation.T his paper firstly g ives out the meaning of Rayleig h channel,then uses MAT LAB softw are to simulate multipath Rayleigh channel according to Jakes model.It puts forw ard the meaning of /counter 0in order to g ain the independent distribution for each path.To adjust the start time of the counter of the w aveform of each path it g ets the independent distribution,also it has low difficulty in operating.At last it proves the v alidity of the simulation method by evaluation program.The method builds the foundation of research on the correlative performances of different communication systems in Rayleigh channel.Key words:ray leigh channel;channel simulation;Jakes model;multipath transm ission 23935卷第3期 王志杨,刘金龙: 一种基于MA T LA B 的瑞利信道仿真方法研究。