当前位置:文档之家› 大学 机械振动 课后习题和答案

大学 机械振动 课后习题和答案

试举出振动设计、系统识别和环境预测的实例。

如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?设有两个刚度分别为1k ,2k 的线性弹簧如图T —所示,试证明:1)它们并联时的总刚度eq k 为:21k k k eq +=2)它们串联时的总刚度eq k 满足:21111k k k eq +=解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为:1122P k xP k x=⎧⎨=⎩由力的平衡有:1212()P P P k k x =+=+故等效刚度为:12eq Pk k k x ==+2)对系统施加力P ,则两个弹簧的变形为: 1122Px k P x k ⎧=⎪⎪⎨⎪=⎪⎩,弹簧的总变形为:121211()x x x P k k =+=+故等效刚度为:122112111eq k k P k x k k k k ===++求图所示扭转系统的总刚度。

两个串联的轴的扭转刚度分别为1t k ,2t k 。

解:对系统施加扭矩T ,则两轴的转角为: 1122t t T k T k θθ⎧=⎪⎪⎨⎪=⎪⎩系统的总转角为:121211()t t T k k θθθ=+=+,12111()eq t t k T k k θ==+ 故等效刚度为:12111eq t t k k k =+两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c1)在两只减振器并联时,2)在两只减振器串联时。

解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为:1122P c x P c x =⎧⎨=⎩&& 由力的平衡有:1212()P P P c c x =+=+&故等效刚度为:12eq P c c c x ==+& 2)对系统施加力P ,则两个减振器的速度为: 1122P x c P x c ⎧=⎪⎪⎨⎪=⎪⎩&&,系统的总速度为:121211()x x x P c c =+=+&&& 故等效刚度为:1211eq P c x c c ==+&一简谐运动,振幅为,周期为,求最大速度和加速度。

解:简谐运动的22(/)0.15nrad sTππω==,振幅为3510m-⨯;即:333222510cos()()0.1522510sin()(/)0.150.1522510()cos()(/)0.150.15x t mx t t m sx t t m sπππππ---⎧=⨯⎪⎪⎪=-⨯⨯⎨⎪⎪=-⨯⨯⎪⎩&&&所以:3max322 max2510(/)0.152510()(/)0.15x m sx m sππ--⎧=⨯⨯⎪⎪⎨⎪=⨯⨯⎪⎩&&&一加速度计指示出结构振动频率为82Hz ,并具有最大加速度50g ,求振动的振幅。

解:由 2max n x A ω=⨯&&可知:2max max 22222509.8/9.8(2)(225)1/50n x x m s A m f s ωπππ⨯====⨯&&&&证明:两个同频率但不同相角的简谐运动的合成仍是同频率的简谐运动,即:)cos()cos(cos θωϕωω-=-+t C t B t A ,并讨论0=ϕ,2/π,π三种特例。

证明:cos cos()cos cos cos sin sin (cos )cos sin sin ))cos()A tB t A t B t B t A B t B tt t C t ωωϕωωϕωϕϕωϕωωθωθωθ+-=++=++=-=-=-其中:sin ()cos B arctg A B C ϕθϕ⎧=⎪+⎨⎪=⎩1)当0ϕ=时:0;C A B θ==+;2)当2πϕ=时:(/);arctg B A C θ=3)当ϕπ=时:0;C A B θ==-;把复数4+5i 表示为指数形式。

解:i 4+5i=Ae θ,其中:A =,5()4arctg θ=证明:一个复向量用i相乘,等于把它旋转2/π。

证明:i ii i22 Ae Ae e Aeiππθθθ+⨯=⨯=证明:梯度算子∇是线性微分算子,即),,(),,()],,(),,([z y x g b z y x f a z y x bg z y x af ∇+∇=+∇这里,a ,b 是与x 、y 、z 无关的常数。

求函数t q B t p A t g ωωcos cos )(+=的均方值。

考虑p 与q 之间的如下三种关系:① np q =,这里n 为正整数;② p q /为有理数;③ p q /为无理数。

汽车悬架减振器机械式常规性能试验台,其结构形式之一如图T —所示。

其激振器为曲柄滑块机构,在导轨下面垂向连接被试减振器。

试分析减振器试验力学的基本规律(位移、速度、加速度、阻尼力)。

图 T —汽车悬架减振器机械式常规性能试验台的另一种结构形式如图T —所示。

其激振器采用曲柄滑块连杆机构,曲柄被驱动后,通过连杆垂向带动与滑块连接的被试减振器。

试分析在这种试验台上的减振器试验力学的基本规律,并与前题比较。

图 T —弹簧下悬挂一物体,弹簧静伸长为δ。

设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。

解:设物体质量为m ,弹簧刚度为k ,则: mg k δ=,即:n ω== 取系统静平衡位置为原点0x =,系统运动方程为:δ⎧+=⎪=⎨⎪=⎩&&&00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。

设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。

解:由题可知:弹簧的静伸长0.850.650.2()m =-=V所以:7(/)n rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=&& 其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩& (参考教材P14)所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mgF kx t x t t N ω===-V因此:振幅为0.2m 、周期为2()7s π、弹簧力最大值为1N 。

重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。

解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有:2121()2T E m m x=+& 212U kx =由()0T d E U +=可知:12()0m m x kx ++=&&即:n ω=系统的初始条件为:⎧=⎪⎨=-⎪⎩&20012m gx x (能量守恒得:221201()2m gh m m x =+&)因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==⎪⎩&2001n m gA x x A即:ωω=-2()(cos )n n m g x t t t k一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。

解:取圆柱体的转角θ为坐标,逆时针为正,静平衡位置时0θ=,则当m 有θ转角时,系统有:2222111()()222T E I m r I mr θθθ=+=+&&& 21()2U k r θ=由()0T d E U +=可知:22()0I mr kr θθ++=&&即:n ω= (rad/s )均质杆长L、重G,用两根长h的铅垂线挂成水平位置,如图所示,试求此杆相对铅垂轴OO微幅振动的周期。

求如图所示系统的周期,三个弹簧都成铅垂,且21312,k k k k ==。

解:取m 的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有:212T E mx =& 22211115226U kx k x k x =+= (其中:1212k k k k k =+)由()0T d E U +=可知:1503mx k x +=&&即:n ω=rad/s ),2T =(s )如图所示,半径为r 的均质圆柱可在半径为R 的圆轨面内无滑动地、以圆轨面最低位置O 为平衡位置左右微摆,试导出柱体的摆动方程,求其固有频率。

解:设物体重量W ,摆角坐标θ如图所示,逆时针为正,当系统有θ摆角时,则: θθ=--≈-2()(1cos )()2U W R r W R r设ϕ&为圆柱体转角速度,质心的瞬时速度: ()c R r r υθϕ=-=&&,即:()R r rϕθ-=&& 记圆柱体绕瞬时接触点A 的转动惯量为A I ,则:=+=+22212A C W W W I I r r r g g gϕθθ-===-&&&222221133()()()2224T A W R r W E I r R r g r g(或者理解为:ϕθ=+-&&22211()22T c W E I R r g ,转动和平动的动能) 由()0T d E U +=可知:θθ-+-=&&23()()02W R r W R r g即:ω=n rad/s )横截面面积为A ,质量为m 的圆柱形浮子静止在比重为γ的液体中。

设从平衡位置压低距离x (见图),然后无初速度地释放,若不计阻尼,求浮子其后的运动。

解:建立如图所示坐标系,系统平衡时0x =,由牛顿第二定律得:()0mx Ax g γ+=&&,即:n ω=有初始条件为:{==&000x x x所以浮子的响应为:()sin()2x t x π=+求如图所示系统微幅扭振的周期。

图中两个摩擦轮可分别绕水平轴O 1,O 2转动,它们相互啮合,不能相对滑动,在图示位置(半径O 1A 与O 2B 在同一水平线上),弹簧不受力。

摩擦轮可以看做等厚均质圆盘,质量分别为m 1,m 2。

解:两轮的质量分别为12,m m ,因此轮的半径比为:12r r = 由于两轮无相对滑动,因此其转角比为:121212r r θθθθ==&&取系统静平衡时10θ=,则有:222222111222121111111()()()22224T E m r m r m m r θθθ=+=+&&& 2221112221211111()()()()222U k r k r k k r θθθ=+=+由()0T d E U +=可知:222121112111()()02m m r k k r θθ+++=&&即:n ω=rad/s ),=2T (s )如图所示,轮子可绕水平轴转动,对转轴的转动惯量为I ,轮缘绕有软绳,下端挂有重量为P 的物体,绳与轮缘之间无滑动。

相关主题