当前位置:文档之家› 基于MATLAB进行控制系统的滞后-超前校正设计要点

基于MATLAB进行控制系统的滞后-超前校正设计要点

计算机控制技术------滞后-超前校正控制器设计系别:电气工程与自动化专业:自动化班级:B110411学号:B11041104姓名:程万里目录一、 滞后-超前校正设计目的和原理 (1)1.1 滞后-超前校正设计目的......................................................... 1 1.2 滞后-超前校正设计原理......................................................... 1 二、滞后-超前校正的设计过程 (3)2.1 校正前系统的参数 (3)2.1.1 用MATLAB 绘制校正前系统的伯德图................................. 3 2.1.2 用MATLAB 求校正前系统的幅值裕量和相位裕量.................. 4 2.1.3 用MATLAB 绘制校正前系统的根轨迹................................. 5 2.1.4 对校正前系统进行仿真分析.............................................5 2.2 滞后-超前校正设计参数计算 (6)2.2.1 选择校正后的截止频率c ω............................................. 6 2.2.2 确定校正参数β、2T 和1T (6)2.3 滞后-超前校正后的验证 (7)2.3.1 用MATLAB 求校正后系统的幅值裕量和相位裕量..................7 2.3.2 用MATLAB 绘制校正后系统的伯德图.................................8 2.3.3 用MATLAB 绘制校正后系统的根轨迹.................................9 2.3.4 用MATLAB 对校正前后的系统进行仿真分析 (10)三、前馈控制3.1 前馈控制原理..................................................................... 12 3.2控制对象的介绍及仿真......................................................... 12 四、 心得体会.............................................................................. 16 参考文献.......................................................................................17 附录 (18)一、滞后-超前校正设计目的和原理1.1 滞后-超前校正设计目的所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。

校正方案主要有串联校正、并联校正、反馈校正和前馈校正。

确定校正装置的结构和参数的方法主要有两类:分析法和综合法。

分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。

在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。

超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。

滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。

1.2 滞后-超前校正设计原理滞后-超前校正RC网络电路图如图1所示。

图1 滞后-超前校正RC网络下面推导它的传递函数:()()()()()2221121*********21111221111111)(s C R C R s C R C R C R s C R s C R sC R sC R sC R sC R s E s M s G c ++++++=++++==令1,,,21221121222111>++=+==βββC R C R C R T T C R T C R T ,则()()()()s T s T s T s T s G c 21211111ββ+⎪⎪⎭⎫⎝⎛+++=其中1T 为超前部分的参数,2T 为滞后部分的参数。

滞后-超前校正的频域设计实际是超前校正和滞后校正频域法设计的综合,基本方法是利用滞后校正将系统校正后的穿越频率调整到超前部分的最大相角处的频率。

具体方法是先合理地选择截止频率c ω,先设计滞后校正部分,再根据已经选定的β设计超前部分。

应用频率法确定滞后超前校正参数的步骤: 1、根据稳态性能指标,绘制未校正系统的伯德图; 2、选择校正后的截止频率c ω; 3、确定校正参数β; 4、确定滞后部分的参数2T ; 5、确定超前部分的参数1T ;6、将滞后部分和超前部分的传递函数组合在一起,即得滞后-超前校正的传递函数;7、绘制校正后的伯德图,检验性能指标。

二、 滞后-超前校正的设计过程2.1 校正前系统的参数根据初始条件,调整开环传递函数:()()()s s s Ks G 5.0115.0++=当系统的静态速度误差系数110-=S K v 时,v K K =5.0。

则120-=s K满足初始条件的最小K 值时的开环传递函数为()()()s s s s G 5.01110++=2.1.1 用MATLAB 绘制校正前系统的伯德图程序:num=[10];den=[0.5,1.5,1,0]; bode(num,den) grid得到的伯德图如图2所示。

图2 校正前系统的伯德图2.1.2 用MATLAB 求校正前系统的幅值裕量和相位裕量用命令margin(G)可以绘制出G 的伯德图,并标出幅值裕量、相位裕量和对应的频率。

用函数[kg,r,wg,wc]=margin(G)可以求出G 的幅值裕量、相位裕量和幅值穿越频率。

程序:num=[10];den=[0.5,1.5,1,0]; G=tf(num,den); margin(G)[kg,r,wg,wc]=margin(G)得到的幅值裕量和相位裕量如图3所示。

图3 校正前系统的幅值裕量和相位裕量运行结果: kg=0.3000 r=-28.0814wg=1.4142 wc=2.4253即幅值裕量dB h 5.103.0lg 20-==,相位裕量β=-28.0814o。

2.1.3 用MATLAB 绘制校正前系统的根轨迹MATLAB 中专门提供了绘制根轨迹的有关函数。

[p,z]=pzmap(num,den)的功能是绘制连续系统的零、极点图。

[r,k]=rlocus(num,den)的功能是绘制∞→=0k 部分的根轨迹。

程序:num=[10];den=[0.5,1.5,1,0]; rlocus(num,den)得到校正前系统的根轨迹如图4所示。

图4 校正前系统的根轨迹2.1.4 对校正前系统进行仿真分析Simulink 是可以用于连续、离散以及混合的线性、非线性控制系统建模、仿真和分析的软件包,并为用户提供了用方框图进行建模的图形接口,很适合于控制系统的仿真。

仿真后得到的结果如图5和图6所示。

图5 校正前系统的仿真图图6 校正前系统仿真的阶跃响应曲线2.2 滞后-超前校正设计参数计算2.2.1 选择校正后的截止频率c ω若性能指标中对系统的快速性未提明确要求时,一般对应()︒-=∠180ωj G 的频率作为c ω。

从图3中得,c ω=1.5。

这样,未校正系统的相位裕量为0o,与要求值仅差+45o,这样大小的超前相角通过简单的超前校正是很容易实现的。

2.2.2 确定校正参数β、2T 和1Tβ由超前部分应产生超前相角ϕ而定,即ϕϕβs i n 1s i n 1-+=。

在本题中,︒=︒+︒=50545ϕ,因此55.750sin 150sin 1≈︒-︒+=β取c T ω15112=,以使滞后相角控制在-5o 以内,因此1.012=T ,滞后部分的传递函数为01.01.0++s s 。

过()()ccj G ωωlg 20,-,作20dB/dec 直线,由该直线与0dB 线交点坐标1Tβ确定1T 。

未校正系统的伯德图在c ω=1.5处的增益是13dB 。

所以过点(1.5,-13)画一条20dB/dec 的直线,与0dB 线的交点确定转折频率。

经计算得,转折频率89.011=T ,另一转折频率为7.61=T β。

所以超前部分的传递函数为7.689.0++s s 。

将滞后校正部分和超前校正部分的传递函数组合在一起,得滞后-超前校正的传递函数为()01.01.07.689.0++++=s s s s s G c系统校正后的传递函数为()()()()()()()()01.07.615.011.089.010++++++=s s s s s s s s G s G c2.3 滞后-超前校正后的验证由于校正过程中,多处采用的是近似计算,可能会造成滞后-超前校正后得到的系统的传递函数不满足题目要求的性能指标。

所以需要对滞后-超前校正后的系统进行验证。

下面用MATLAB 求已校正系统的相角裕量和幅值裕量。

2.3.1 用MATLAB 求校正后系统的幅值裕量和相位裕量程序:num=[10,9.9,0.89];den=[0.5,4.855,11.0985,6.8055,0.067,0]; G=tf(num,den);margin(G)[kg,r,wg,wc]=margin(G)得到的校正后系统的幅值裕量和相位裕量如图7所示。

10-410-310-210-110101102103-270-225-180-135-90P h a s e (d e g )Bode DiagramGm = 15.4 dB (at 3.68 rad/sec) , P m = 47.6 deg (at 1.21 rad/sec)Frequency (rad/sec)-150-100-50050100150M a g n i t u d e (d B )图7 校正后系统的幅值裕量和相位裕量运行结果: kg=5.9195 r=47.6239wg=3.6762 wc=1.2072即校正后系统的相位裕量︒=6239.47γ,()10lim 0==→s sG K s v 满足指标。

假设验证结果不满足指标,重新选择校正后的截止频率,重复上述过程,直到满足性能指标为止。

2.3.2 用MATLAB 绘制校正后系统的伯德图程序:num=[10,9.9,0.89];den=[0.5,4.855,11.0985,6.8055,0.067,0]; bode(num,den) grid得到的伯德图如图8所示。

相关主题