当前位置:文档之家› 花青素和原花青素相关资料

花青素和原花青素相关资料

花青素和原花青素
一、区别
(一)定义
1、花青素:又称花色素,是自然界一类广泛存在于植物中的水溶性天然素,属黄酮类化合物。

也是植物花瓣中的主要呈色物质,水果、蔬菜、花卉等颜色大部分与之有关。

在植物细胞液泡不同的pH 值条件下,使花瓣呈现五彩缤纷的颜色。

在酸性条件下呈红色,其颜色的深浅与花青素的含量呈正相关性,可用分光光度计快速测定,在碱性条件下呈蓝色。

花青素的基本结构单元是2一苯基苯并吡喃型阳离子,即花色基元。

现已知的花青素有20多种。

2、原花青素:也叫前花青素,英文名是Oligomeric Proantho Cyanidins 简称 OPC,是一种在热酸处理下能产生花色素的多酚化合物,是目前国际上公认的清除人体内自由基有效的天然抗氧化剂。

一般为红棕色粉末,气微、味涩,溶于水和大多有机溶剂。

原花青素属于植物多酚类物质,分子由儿茶素,表儿茶素(没食子酸)分子相互缩合而成,根据缩合数量及连接的位置而构成不同类型的聚合物,如二聚体、三聚体、四聚体……十聚体等,其中二到四聚体称为低聚体原花青素(Oligomeric Proanthocyanidins,缩写为OPC),五以上聚体称为高聚体。

在各聚合体原花青素中功能活性最强的部分是低聚体原花青素(OPC)。

部分二聚体、三聚体、四聚体的结构式。

通常把聚合度小于6的组分称为低聚原花青素,如儿茶素、表儿茶素、原花青素B1和B2等,而把聚合度大于6的组分称为多聚体.一般认为,药用植物提取物中存在的低聚原花青素是有效成分,它们具有抗氧化、捕捉自由基等多种生物活性。

(二)化学结构
从化学结构来看,花青素与原花青素是两种完全不同的物质,原花青素属多酚类物质,花青素属类黄酮类物质。

原花青素也叫前花青素,在酸性介质中加热均可产生花青素,故将这类多酚类物质命名为原花青素。

(三)颜色
花青素是一种水溶性色素,是构成花瓣和果实颜色的主要色素之一,可以随着细胞液的酸碱改变颜色。

细胞液呈酸性则偏红,细胞液呈碱性则偏蓝。

原花青素是无色的,是由不同数量的儿茶素或表儿茶素结合而成。

(四)存在区域
原花青素广泛存在于植物的皮、壳、籽中,比如葡萄籽、苹果皮、花生皮、蔓越莓中;花青素广泛存在于如蓝莓、樱桃、草莓、葡萄、黑醋栗、山桑子等,其中以紫红色的矢车菊色素,橘红色的天竺葵色素,及蓝紫色的飞燕草色素等三种为自然界常见。

(五)功效
虽然花青素与原花青素都有抗氧化去除自由基的作用,但是原花青素抗氧化的作用比花青素要大得多。

OPC具有强大的抗氧化和清除自由基能力和对人体微循环具有特殊改善的双重功效,以高效、高生物利用而著称。

数据表明,原花青素具有很强的清除氧离子的能力,其抑制邻苯三酚自氧化率可高达91.5%。

(六)物质转化
原花青素在酸性介质中加热可产生花青素,所以叫“原花青素”。

但是花青素不能转化成原花青素,此过程不能逆转。

花色苷是花青素与糖以糖苷键结合而成的一类化合物。

植物中,花青素多以花色苷的形式存在。

(七)成本
自然界中最容易得到的而且成本最低的是花青素,而需要更多成本去提炼的原花青素OPC和前花青素OPA
二、联系
花青素与原花青素同为类黄酮类,两者都是以3个芳香环结构为基底,两者都是一种强效抗氧化剂。

他们的功效大致相同。

三、花青素
(一)保存方法
1、冻干技术
冻干,全称真空冷冻干燥,是将湿物料或溶液在较低的温度(-10℃~-50℃)下冻结成固态,然后在真空下使其中的水分不经液态直接升华成气态,最终使物料脱水的干燥技术。

冻干的基本原理是基于水的三态变化。

水有固态、液态和气态,三种相态既可以相互转换又可以共存。

当水在三相点时,水、冰、水蒸气三者可共存且相互平衡。

在高真空状态下,利用升华原理,使预先冻结的物料中的水分,不经过冰的融化,直接以冰态升华为水蒸汽被除去,从而达到冷冻干燥的目的。

2、破壁技术
植物细胞动物细胞不同,植物细胞外还有一层厚厚的细胞壁,其主要成分就是纤维素,硬硬的壳把细胞紧紧的包裹在里面。

人类的消化液无法破坏植物细胞,要吸收植物的所有营养成分,必须将其外壁破坏。

细胞破壁技术就是通过打破植物细胞壁,营养成分在未遭到破坏的情况下可以完全释放出来,使营养更好地被吸收和保持活性成分的技术,释放植物生化素,最大限度地融合其中的膳食纤维、维生素及其他营养元素。

这是当今最先进的食品加工技术。

破壁技术可使有效物质得到充分释放,食品的营养成分和功效作用将提高至少10倍,利于人体吸收。

3、超微技术
冻干花青素采用超微粉碎技术,将九种浆果冻干后破壁粉碎为约2000-3000目(目数越大,分子越小,越容易吸收)的超微粉剂,大约为5μm(微米)的直径。

(注:一般人体的毛孔直径为20μ)如此微小分子的花青素粉剂,可以直接被人体肠道所吸收而快速作用于人体,做到最大化吸收有效成分,最大化发挥花青素功能作用。

生活中我们吃的食物,尤其是蔬菜时,都是经过加热(蒸煮煎炒炖)为熟食,食物中的花青素早已失去活性,成为无效物质了,这就是为什么我们日常也经常食用富含花青素的水果蔬菜,却没感受到花青素的强大功效的原因。

而冻干花青素采用国际先进的冻干技术,可保持花青素活性,发挥其应有的功效。

(二)提取方法
1、有机溶剂萃取法
这是目前国内外最广泛使用的提取方法。

多数选择甲醇、乙酮、丙酮等混合溶剂对材料进行溶解过滤,通过调节溶液酸碱度萃取滤液中的花青素。

国内吴信子等用盐酸一甲醇溶液提取,然后用纸层析法(中号)和柱层析法
(聚乙酰胺)进行花色苷的分离。

目前,有机溶剂萃取法已成功地应用于诸如葡萄籽、石榴皮、蓝莓等绝大多数含花青素物质的提取分离。

有机溶剂萃取法的关键是选择有效溶剂,要求既要对被提取的有效成分有较大溶解度,又要避免大量杂质的溶解。

该方法原理简单,对设备要求较低,不足之处是大多数有机溶剂毒副作用大且产物提取率低。

2、水溶液提取法
有机溶剂萃取的花青素多有毒性残留且生产过程环境污染大,有鉴于此,水溶液提取应运而生。

该方法一般将植物材料在常压或高压下用热水浸泡,然后用非极性大孔树脂吸附;或直接使用脱氧热水提取,再采用超滤或反渗透,浓缩得到粗提物。

它是Duncan和Gilmour(1998)发明的提取花青素的方法,此方法设备要求简单,但产品纯度低。

3、超临界流体萃取法
超临界流体萃取是利用压力和温度对超临界流体溶解能力的影响进行提取。

这种方法产品提取率高,但设备成本过高。

孙传经采用超临界CO:萃取法从银杏叶、黑加仑籽及葡萄籽中提取花青素工艺进行了研究。

该工艺中CO 和改性剂可循环使用,对环境无污染。

4、微波提取法
该法于1986年被Ganzlert E9]等人首先用于分离各种类型化合物。

国内李风英探讨了微波技术对葡萄籽中原花青素提取量和分子结构的影响。

为微波在葡萄籽中有效成分浸提方面的研究奠定了基础。

微波提取法是利用在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。

该技术选择性好,萃取率高,速度快,操作简单,废液排放量少。

5、超声波提取法
超声波在20世纪50年代后逐渐应用于化学化工生产过程之中,且主要集中在植物中药用成分、多糖以及其它功能性成分的提取等研究领域。

超声波提取运用前景好、操作简单、快速高效、生产过程清洁无公害。

2008年时,Corrales【12]等人开展的不同提取方法对葡萄中花青素的提取率影响的对比实验结果表明:相同条件下与热浸70~(2提取相比,超声波辅助提取花青素等酚类的效率可以提高50%以上。

6、微生物发酵提取法
此方法将生物发酵技术应用于花青素的提取之中,是生物科学与化工生产之间的超强渗透与有效结合。

微生物发酵法利用微生物或酶让含有花青素的细胞胞壁降解分离,使细胞胞体内花青素充分溶入到提取液中,从而增加提取的产率与速率。

王振宇I1 采用微生物和纤维素酶降解大花葵细胞壁提取花青素就是可靠的研究实例。

该方法的优点是操作稳定性及可靠性高,环境友好。

7、加压溶剂提取
加压溶剂萃取法是通过加压提高溶剂的沸点,进而使被提取物在溶剂中的溶解度增加,从而获得较高的萃取效率。

Arapitsas_】 (2008)等人采用了此技术优化了紫甘蓝中花青素的最佳提取工艺。

该法的优点是提取率高,但经济成本亦较高。

8、亚临界水提取技术
亚临界水提取技术是最近几年来的新成果,它的具体做法就是在适度压力下,将水加热到IO0~C以上,临界温度374~C以下的高温,使水的极性随温度的变化而改变,对原材料中的花青素进行提取。

近两年的研究实例有Luque—rodriguez等人采用动态过热流体提取葡萄皮中的花青素,并优化了最佳提取工艺。

对比于其他提取方法,亚临界水提取方法清洁、有效、花青素提取量为传统动态固液萃取的三倍,且产品性能更优,不足之处是工艺条件要求较高。

9、其他提取方法
包括高压脉冲电场辅助提取、双水相萃取、超高压辅助提取。

前两种可应用于蛋白质、核酸、多糖的提取研究,而超高压辅助提取已成功用于葡萄中花青素的提取之中,且对比发现高压辅助提取花青素等多酚类的效率可以提高近50%。

相关主题