当前位置:文档之家› 刚体力学 习题库

刚体力学 习题库

第四章 刚体力学一、计算题 1.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ①2分对滑轮: TR = J β ② 2分 运动学关系: a =R β ③ 1分将①、②、③式联立得a =mg / (m +21M ) 1分 ∵ v 0=0,∴ v =at =mgt / (m +21M ) 2分2.如图所示,转轮A 、B 可分别独立地绕光滑的固定轴O 转动,它们的质量分别为m A =10 kg 和m B =20 kg ,半径分别为r A 和r B .现用力f A 和f B 分别向下拉绕在轮上的细绳且使绳与轮之间无滑动.为使A 、B 轮边缘处的切向加速度相同,相应的拉力f A 、f B 之比应为多少?(其中A 、B 轮绕O 轴转动时的转动惯量分别为221A A A r m J =和221B B B r m J =)解:根据转动定律 f A r A = J A βA ① 1分其中221AA A r m J =,且 f B r B = J B βB ② 1分 其中221B B B r m J =.要使A 、B 轮边上的切向加速度相同,应有a = r A βA = r B βB ③ 1分由①、②式,有BB B AA AB A B A B A B A r m r m r J r J f f ββββ== ④ 由③式有 βA / βB = r B / r A将上式代入④式,得 f A / f B = m A / m B = 212分3.一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg ­T =ma ① 2分T r =J β ② 2分 由运动学关系有: a = r β ③ 2分由①、②、③式解得: J =m ( g -a ) r 2 / a ④mMRMR βT mgaB A f Ar B r AmOr又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt22-1) 2分4.质量为5 kg 的一桶水悬于绕在辘轳上的轻绳的下端,辘轳可视为一质量为10 kg 的圆柱体.桶从井口由静止释放,求桶下落过程中绳中的张力.辘轳绕轴转动时的转动惯量为221MR ,其中M 和R 分别为辘轳的质量和半径,轴上摩擦忽略不计.解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ()[]J TR g /∆-那么 mg J mR T =⎪⎪⎭⎫⎝⎛+21将 J =21MR 2代入上式,得mM mMgT 2+==24.5 N 2分5.一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求: (1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.解:设棒的质量为m ,当棒与水平面成60°角并开始下落时,根据转动定律 M = J β 1分其中 4/30sin 21mgl mgl M ==1分 于是 2rad/s 35.743 ===lgJ M β 1分当棒转动到水平位置时, M =21mgl 1分那么 2rad/s 7.1423 ===lg J M β 1分6.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3) 当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵mg -T =ma 1分TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分7.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力. 解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J β 2分 a =R β 1分 ∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分因此(1)下落距离 h =221at =63.3 m2分(2) 张力 T =m (g -a )=37.9 N 1分8.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉a力为多少?解:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中ω 0 = 0 ,则 有ωt = βt那么圆柱体的角速度====55 t t t βω20 rad/s 1分(3) 根据转动定律 fr = J β则 f = J β / r = 32 N 2分9.一轴承光滑的定滑轮,质量为M =2.00 kg ,半径为R =0.100 m ,一根不能伸长的轻绳,一端固定在定滑轮上,另一端系有一质量为m =5.00 kg 的物体,如图所示.已知定滑轮的转动惯量为J =221MR ,其初角速度 ω0=10.0 rad/s ,方向垂直纸面向里.求:(1) 定滑轮的角加速度的大小和方向;(2) 定滑轮的角速度变化到ω=0时,物体上升的高度; (3)当物体回到原来位置时,定滑轮的角速度的大小和方向.解:(1) ∵mg -T =ma 1分 TR =J β 2分 a =R β 1分 ∴ β = mgR / (mR 2+J )()R M m mgMR mR mgR +=+=222122 =81.7 rad/s 2 1分 方向垂直纸面向外. 1分(2) ∵ βθωω2202-=当ω=0 时, rad 612.0220==βωθ 物体上升的高度h = R θ = 6.12×10-2 m 2分 (3)==βθω210.0 rad/s方向垂直纸面向外. 2分10.一质量为M =15 kg 、半径为R =0.30 m 的圆柱体,可绕与其几何轴重合的水平固定轴转动(转动惯量J =221MR ).现以一不能伸长的轻绳绕于柱面,而在绳的下端悬一质量m =8.0 kg 的物体.不计圆柱体与轴之间的摩擦,求:(1) 物体自静止下落, 5 s 内下降的距离; (2) 绳中的张力.解: J =221MR =0.675 kg ·m 2 ∵ mg -T =ma1分 TR =J β 2分 a =R β 1分 ∴ a =mgR 2 / (mR 2 + J )=5.06 m / s 2 1分a因此(1)下落距离 h =221at =63.3 m 2分 (2) 张力 T =m (g -a )=37.9 N 1分11.一半径为25 cm 的圆柱体,可绕与其中心轴线重合的光滑固定轴转动.圆柱体上绕上绳子.圆柱体初角速度为零,现拉绳的端点,使其以1 m/s 2的加速度运动.绳与圆柱表面无相对滑动.试计算在t = 5 s 时(1) 圆柱体的角加速度, (2) 圆柱体的角速度, (3) 如果圆柱体对转轴的转动惯量为2 kg ·m 2,那么要保持上述角加速度不变,应加的拉力为多少?解:(1) 圆柱体的角加速度 ββ=a / r =4 rad / s 2 2分(2) 根据t t 0βωω+=,此题中ω 0 = 0 ,则 有ωt = βt那么圆柱体的角速度====55 t t t βω20 rad/s 1分(3) 根据转动定律 fr = J β则 f = J β / r = 32 N 2分12.长为L 的梯子斜靠在光滑的墙上高为h 的地方,梯子和地面间的静摩擦系数为μ,若梯子的重量忽略,试问人爬到离地面多高的地方,梯子就会滑倒下来?解:当人爬到离地面x 高度处梯子刚要滑下,此时梯子与地面间为最大静摩擦,仍处于平衡状态 (不稳定的) .1分 N 1-f =0, N 2-P =0 1分 N 1h -Px ·ctg θ =0 1分 f =μN 21分解得 222/tg hL h h x -=⋅=μθμ 1分13.一转动惯量为J 的圆盘绕一固定轴转动,起初角速度为ω0.设它所受阻力矩与转动角速度成正比,即M =-k ω (k 为正的常数),求圆盘的角速度从ω0变为021ω时所需的时间. 解:根据转动定律: J d ω / d t = -k ω∴t Jkd d -=ωω2分 两边积分:⎰⎰-=t t Jk 02/d d 100ωωωω得 ln2 = kt / J∴ t =(J ln2) / k 3分14.一圆柱体截面半径为r ,重为P ,放置如图所示.它与墙面和地面之间的静摩擦系数均为31.若对圆柱体施以向下的力F =2P 可使它刚好要反时针转动,求(1) 作用于A 点的正压力和摩擦力,(2) 力F 与P之间的垂直距离d .解:设正压力N A 、N B ,摩擦力f A ,f B 如图.根据力的平衡,有 f A +N B = F+P = 3P ① 1分 N A =f B ② 1分 根据力矩平衡,有Fd = ( f A + f B ) r ③ 2分 刚要转动有 A A N f 31= ④ B B N f 31= ⑤1分(1) 把④及 ②、⑤代入①可求得 N A =0.9P , f A =0.3P 2分(2) 由③可求得 d = 0.6 r 1分15.一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分a =r β2分 解上述5个联立方程得: T =11mg / 82分16.质量分别为m 和2m、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大小.解:受力分析如图. 2分amg -T 2 = ma 2 1分 T 1-mg = ma 1 1分 T 2 (2r )-T 1r = 9mr 2β / 2 2分2r β = a 2 1分 r β = a 1 1分 解上述5个联立方程,得:r g 192=β 2分17.质量m =1.1 kg 的匀质圆盘,可以绕通过其中心且垂直盘面的水平光滑固定轴转动,对轴的转动惯量J =221mr (r 为盘的半径).圆盘边缘绕有绳子,绳子下端挂一质量m 1=1.0 kg 的物体,如图所示.起初在圆盘上加一恒力矩使物体以速率v 0=0.6 m/s 匀速上升,如撤去所加力矩,问经历多少时间圆盘开始作反方向转动.解:撤去外加力矩后受力分析如图所示.2分m 1g -T = m 1a1分 Tr =J β 1分a =r β1分 a = m 1gr / ( m 1r + J / r ) 代入J =221mr , a =mm gm 2111+= 6.32 ms -2 2分 ∵ v 0-at =02分∴ t =v 0 / a =0.095 s 1分18.一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示. 设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下.2分根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分 对重物: T 1-21Mg =21Ma ② 2分 根据转动定律,对滑轮有 (T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分a a 1T a2①、②、③、④四式联立解得 a =2g / 7 1分19.如图所示,设两重物的质量分别为m 1和m 2,且m 1>m 2,定滑轮的半径为r ,对转轴的转动惯量为J ,轻绳与滑轮间无滑动,滑轮轴上摩擦不计.设开始时系统静止,试求t 时刻滑轮的角速度.解:作示力图.两重物加速度大小a 相同,方向如图.示力图 2分 m 1g -T 1=m 1a 1分 T 2-m 2g =m 2a 1分设滑轮的角加速度为β,则 (T 1-T 2)r =J β2分且有 a =r β1分 由以上四式消去T 1,T 2得:()()J r m m grm m ++-=22121β2分开始时系统静止,故t 时刻滑轮的角速度.()()J r m m grtm m t ++-==22121 βω1分20.质量为M 1=24 kg 的圆轮,可绕水平光滑固定轴转动,一轻绳缠绕于轮上,另一端通过质量为M 2=5 kg 的圆盘形定滑轮悬有m =10 kg 的物体.求当重物由静止开始下降了h =0.5 m 时,(1) 物体的速度; (2) 绳中张力.(设绳与定滑轮间无相对滑动,圆轮、定滑轮绕通过轮心且垂直于横截面的水平光滑轴的转动惯量分别为21121R M J =,22221r M J =) 解:各物体的受力情况如图所示. 图2分 由转动定律、牛顿第二定律及运动学方程,可列出以下联立方程:T 1R =J 1β1=12121βR M 方程各1分共5分 T 2r -T 1r =J 2β2=22121βr M mg -T 2=ma , a =R β1=r β2 , v 2=2ahma求解联立方程,得 ()42121=++=m M M mga m/s 2ah 2=v =2 m/s 1分 T 2=m (g -a )=58 N 1分 T 1=a M 121=48 N 1分21.两个匀质圆盘,一大一小,同轴地粘结在一起,构成一个组合轮.小圆盘的半径为r ,质量为m ;大圆盘的半径r '=2r ,质量 m '=2m .组合轮可绕通过其中心且垂直于盘面的光滑水平固定轴O 转动,对O 轴的转动惯量J =9mr 2 / 2.两圆盘边缘上分别绕有轻质细绳,细绳下端各悬挂质量为m 的物体A 和B ,如图所示.这一系统从静止开始运动,绳与盘无相对滑动,绳的长度不变.已知r = 10 cm .求: (1) 组合轮的角加速度β;(2) 当物体A 上升h =40 cm 时,组合轮的角速度ω.解:(1) 各物体受力情况如图.图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (2r )-Tr =9mr 2β / 2 1分 a =r β 1分 a '=(2r )β 1分由上述方程组解得:β=2g / (19r )=10.3 rad ·s -2 1分(2) 设θ为组合轮转过的角度,则θ=h / rω2=2βθ所以,ω = (2βh / r )1/2=9.08 rad ·s -1 2分22.物体A 和B 叠放在水平桌面上,由跨过定滑轮的轻质细绳相互连接,如图所示.今用大小为F 的水平力拉A .设A 、B 和滑轮的质量都为m ,滑轮的半径为R ,对轴的转动惯量J =221mR .AB 之间、A 与桌面之间、滑轮与其轴之间的摩擦都可以忽略不计,绳与滑轮之间无相对的滑动且绳不可伸长.已知F =10 N ,m =8.0 kg ,R =0.050 m .求: (1) 滑轮的角加速度; (2) 物体A 与滑轮之间的绳中的张力; (3) 物体B 与滑轮之间的绳中的张力.解:各物体受力情况如图. 图2分F -T =ma 1分 T '=ma 1分21N a2a 'a '(T T '-)R =β221mR 1分 a =R β 1分由上述方程组解得:β =2F / (5mR )=10 rad ·s -22分T =3F / 5=6.0 N 1分 T '=2F / 5=4.0 N1分23.两个大小不同、具有水平光滑轴的定滑轮,顶点在同一水平线上.小滑轮的质量为m ',半径为r ',对轴的转动惯量J =221mr .大滑轮的质量m =2m ,半径r =2r ,对轴的转动惯量221r m J ''='.一根不可伸长的轻质细绳跨过这两个定滑轮,绳的两端分别挂着物体A 和B .A的质量为m ,B 的质量 m '=2m .这一系统由静止开始转动.已知m =6.0 kg ,r =5.0 cm .求两滑轮的角加速度和它们之间绳中的张力.解:各物体受力情况如图. 2分 T A -mg =ma 1分 (2m)g -T A =(2m )a 1分(T -T A )r =β221mr 1分 (T B -T )(2r )=21(2m )(2r )2β' 1分a =r β=(2r )β' 1分 由上述方程组解得:β=2g / (9r )=43.6 rad ·s -2 1分β'=β21=21.8 rad ·s -2 1分 T =(4/3)mg =78.4 N 1分24.一质量m = 6.00 kg 、长l = 1.00 m 的匀质棒,放在水平桌面上,可绕通过其中心的竖直固定轴转动,对轴的转动惯量J = ml 2 / 12.t = 0时棒的角速度ω0 = 10.0 rad ·s -1.由于受到恒定的阻力矩的作用,t = 20 s 时,棒停止运动.求: (1) 棒的角加速度的大小; (2) 棒所受阻力矩的大小; (3) 从t = 0到t = 10 s 时间内棒转过的角度. 解:(1) 0=ω 0+β tβ=-ω 0 / t =-0.50 rad ·s -2 2分 (2) M r =ml 2β / 12=-0.25 N ·m 2分(3) θ10=ω 0t +21β t 2=75 rad 1分aa T ’ '25.如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为2321r m . 解:对两物体分别应用牛顿第二定律(见图),则有 m 1g -T 1 = m 1a ①T 2 – m 2g = m 2a ② 2分对滑轮应用转动定律,则有ββ⋅==-'-'232121r m J M r T r T f ③ 2分 对轮缘上任一点,有 a = β r ④ 1分又: 1T '= T 1, 2T '= T 2 ⑤则联立上面五个式子可以解出 rm r m r m M gr m gr m a f3212121++--==2 m/s 2 2分T 1=m 1g -m 1a =156 NT 2=m 2g -m 2 a =118N 3分26.如图所示,一半径为R 的匀质小木球固结在一长度为l 的匀质细棒的下端,且可绕水平光滑固定轴O 转动.今有一质量为m ,速度为0v的子弹,沿着与水平面成α角的方向射向球心,且嵌于球心.已知小木球、细棒对通过O 的水平轴的转动惯量的总和为J .求子弹嵌入球心后系统的共同角速度.解:选子弹、细棒、小木球为系统.子弹射入时,系统所受合外力矩为零,系统对转轴的角动量守恒. 2分 m v 0 (R + l )cos α = [J + m (R + l )2 ]ω 2分()()20cos l R m J l R m +++=αωv 1分27.如图所示,一半径为R ,质量为m 的水平圆台,正以角速度ω0绕通过其中心的竖直固定光滑轴转动,转动惯量J =221mR .台上原站有2人,质量各等于转台质量的一半,一人站于台边A 处,另一人站于距台中心R 21的B 处.今A 处的人相对于圆台以速率v 顺着圆台转向沿圆周走动,同时B 处的人相对于圆台以速率2v 逆圆台转向沿圆周走动.求圆台这时的角速度ω.2122'T解:以转台和二人为研究对象,所受外力只有重力及轴的支撑力,诸力对转轴的合力矩为零,所以系统角动量守恒.各转动惯量分别为2分 221mR J =,221mR J A =,()22/21R m J B =2分以地面为参照系,A 处的人走动的角速度为ω+(v / R ),B 处的人 1分走动的角速度为ω-(2v /21R )=ω-(4v / R ).由角动量守恒定律 1分 ()02222/212121ω⎥⎦⎤⎢⎣⎡++R m mR mR = ()R mR mR /212122v ++=ωω()R R m /421212v -⎪⎭⎫ ⎝⎛+ω 2分解出 ω =ω 0 2分28.一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v 0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求(1) 子弹击中圆盘后,盘所获得的角速度. (2) 经过多少时间后,圆盘停止转动.(圆盘绕通过O 的竖直轴的转动惯量为221MR ,忽略子弹重力造成的摩擦阻力矩)解:(1) 以子弹和圆盘为系统,在子弹击中圆盘过程中,对轴O 的角动量守恒.1分m v 0R =(21MR 2+mR 2)ω 2分R m M m ⎪⎭⎫ ⎝⎛+=210v ω 1分(2) 设σ表示圆盘单位面积的质量,可求出圆盘所受水平面的摩擦力矩的大小为 ⎰π⋅=Rf r rg r M 0d 2σμ=(2 / 3)πμσgR 3=(2 / 3)μMgR 2分设经过∆t 时间圆盘停止转动,则按角动量定理有-M f ∆t =0-J ω=-(21MR 2+mR 2)ω=- m v 0R 2分 ∴ ()Mg m MgR R m M R m t fμμ2v 33/2v v 000===∆ 2分mR O0v29.有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =) 解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即 1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m gM lf 10121d μμ-=⋅-=⎰ ② 2分 由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分Am 1 ,l1v2v俯视图。

相关主题