第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a d d -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
解:大圆盘对过圆盘中心o 且与盘面垂直的轴线(以下简称o 轴)的转动惯量为221MRI =.由于对称放置,两个小圆盘对o 轴的转动惯量相等,设为I’,圆盘质量的面密度σ=M/πR 2,根据平行轴定理,2412222222124))(()('r M r r r I Rr M R +=+=πσπσ 设挖去两个小圆盘后,剩余部分对o 轴的转动惯量为I”)/2('2"24222122122124R r r R M Mr MR I I I R r M --=--=-=3.19一转动系统的转动惯量为I=8.0kgm 2,转速为ω=41.9rad/s ,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为μ=0.4,轮半径为r=0.4m ,问从开始制动到静止需多长时间?解:由转动定理:,M I α=20.43920.415.68/8.0M rad s I α⨯⨯⨯===制动过程可视为匀减速转动,/t αω=∆∆ /41.9/15.68 2.67t s ωα∆=∆==3.20一轻绳绕于r=0.2m 的飞轮边缘,以恒力 F=98N 拉绳,如题3-20图(a )所示。
已知飞轮的转动惯量J=0.5kg.m 2,轴承无摩擦。
求 (1)飞轮的角加速度。
(2)绳子拉下5m 时,飞轮的角速度和动能。
(3)如把重量 P=98N 的物体挂在绳端,如题3-20图(b )所示,再求上面的结果。
解 (1)由转动定理得:20.29839.20.5M r F rad s I I α-⋅⨯====⋅(2)由定轴转动刚体的动能定理得:212k A E I ω== k E F h =⋅=490J144.27rad s ω-===⋅ (3)物体受力如图所示:P T ma rT J a r T T αα⎧-=⎪⎪'=⎨⎪'==⎪⎩解方程组并代入数据得: 222989802217898020598Pr g ...rad s Pr Jg ...α-⨯⨯===⋅+⨯+⨯ 22222111222k P P A E J r J r Ph g g ωωω⎛⎫==+=+= ⎪⎝⎭133.15rad s ω-===⋅ 22110533********k E J *.*..J ω=== 3.21现在用阿特伍德机测滑轮转动惯量。
用轻线且尽可能润滑轮轴。
两端悬挂重物质量各为m 1=0.46kg ,m 2=0.5kg ,滑轮半径为0.05m 。
自静止始,释放重物后并测得0.5s 内m 2下降了0.75m 。
滑轮转动惯量是多少? 解:隔离m 2、m 1及滑轮,受力及运动情况如图所示。
对m 2、m 1分别应用牛顿第二定律:)2();1(111222a m g m T a m T g m =-=- 对滑轮应用转动定理:R Ia I R T T /)(12==-β (3)质点m 2作匀加速直线运动,由运动学公式:221aty =∆, 222/06.00.5/75.02/2s m t y a =⨯=∆=∴由 ⑴、⑵可求得 a m m g m m T T )()(121212+--=-,代入(3)中,可求得21212)](/)[(R m m a g m m I +--=,代入数据:2221039.105.0)96.006.0/8.904.0(kgm I -⨯=⨯-⨯=3.22质量为m ,半径为的均匀圆盘在水平面上绕中心轴转动,如题3-22图所示。
盘与水平面的动摩擦因数为,圆盘的初角速度为0ω,问到停止转动,圆盘共转了多少圈?解: 221mR I =如图所示:rdr dm πσ2= g d m r dM μ-=R mg dr r g gdm r dM M R μπσμμ32202-=-=-==⎰⎰⎰由转动定律:M=d d d d JJ J dt d dt d ωωθωωθθ== 得: 00201223mR d mgR d θωωωμθ∆=-⋅⎰⎰ 积分得: 238R gωθμ∆=所以从角速度为0ω到停止转动,圆盘共转了2316R gωπμ圈。
3.23如图所示,弹簧的倔强系数k=2N/m,可视为圆盘的滑轮半径r=0.05m ,质量m 1=80g ,设弹簧和绳的质量可不计,绳不可伸长,绳与滑轮间无相对滑动,运动中阻力不计,求1kg 质量的物体从静止开始(这时弹簧不伸长)落下1米时,速度的大小等于多少(g 取10m/s 2)解:以地球、物体、弹簧、滑轮为系统,其能量守恒物体地桌面处为重力势能的零点,弹簧的原长为弹性势能的零点,则有:22212111022212m v J kx m gh v r J mr x hωω⎧++-=⎪⎪⎨⎪===⎪⎩解方程得:v =代入数据计算得:v=1.48m/s 。
即物体下落0.5m 的速度为1.48m/s3.24如题3-24图所示,均质矩形薄板绕竖直边转动,初始角速度为0ω,转动时受到空气的阻力。
阻力垂直于板面,每一小面积所受阻力的大小与其面积及速度平方的乘积成正比,比例常数为k 。
试计算经过多少时间,薄板角速度减为原来的一半,设薄板竖直边长为b ,宽为a ,薄板质量为m 。
解;如图所示,取图示的阴影部分为研究对象v x ω= 222d f k v d Sk x b d xω== 23dM x df k bx dx ω=⋅=23240014a aM dM k bx dx k ba ωω===⎰⎰d M J dt ω= 244d Jdt Jd M k ba ωωω== 024242004443/J d J mt kba kba kba ωωωωωω===⎰所以经过243mkba ω的时间,薄板角速度减为原来的一半。
3-25一个质量为M ,半径为 R 并以角速度ω旋转的飞轮(可看作匀质圆盘),在某一瞬间突破口然有一片质量为m 的碎片从轮的边缘上飞出,见题3-25图。
假定碎片脱离飞轮时的瞬时速度方向正好竖直向上, (1)问它能上升多高?(2)求余下部分的角速度、角动量和转动动能。
解:(1)碎片以R ω的初速度竖直向上运动。
上升的高度:222022v R h g gω==(2)余下部分的角速度仍为 ω角动量 212L J (M m )R ωω==-转动动能 221122k E (M m )R ω=-3.26两滑冰运动员,在相距1.5m 的两平行线上相向而行。
两人质量分别为m A =60kg ,m B =70kg ,他们的速率分别为v A =7m.s -1, v A =6m.s -1,当二者最接近时,便拉起手来,开始绕质心作圆运动,并保持二者的距离为1.5m 。
求该瞬时: (1)系统对通过质心的竖直轴的总角动量; (2)系统的角速度;(3)两人拉手前、后的总动能。
这一过程中能量是否守恒? 解:如图所示, (1)60159607013A AB m l .x m m m ⨯===++ 921151326l x .m -=-=221607913706212663010A A B B L m v (l x )m v x //.kgm s -=-+=⨯⨯+⨯⨯=⨯⋅ (2)L J ω= 22c cc c B A L L J m x m (l x )ω==+-,代入数据求得:1867c .rad s ω-=⋅ (3)以地面为参考系。
拉手前的总动能:2211122k A A B B E m v m v =+,代入数据得12730k E J =, 拉手后的总动能:包括括个部分:(1)系统相对于质心的动能(2)系统随质心平动的动能222222211112222A A B B k c A B c c A B A B m v m v E J (m m )v J (m m )m m ωω⎛⎫+=++=++ ⎪+⎝⎭动能不守恒,总能量守恒。
3.27一均匀细棒长为 l ,质量为m ,以与棒长方向相垂直的速度v 0在光滑水平面内平动时,与前方一固定的光滑支点 O 发生完全非弹性碰撞,碰撞点位于离棒中心一方l/4处,如题3-27图所示,求棒在碰撞后的瞬时绕过O 点垂直于杆所在平面的轴转动的角速度0ω。
解:如图所示:碰撞前后系统对点O 的角动量守恒。
碰撞前后: 104L mv l /=碰撞前后:2220001124l L J ml m ωω⎡⎤⎛⎫==+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦由12L L =可求得:200127v rad s lω-=⋅3.28如题3-28图所示,一质量为m 的小球由一绳索系着,以角速度ω0 在无摩擦的水平面上,作半径为r 0 的圆周运动.如果在绳的另一端作用一竖直向下的拉力,使小球作半径为r 0/2 的圆周运动.试求:(1) 小球新的角速度;(2) 拉力所作的功. 解:如图所示,小球对桌面上的小孔的角动量守恒(1)初态始角动量 2100L m r ω=;终态始角动量 22014L mr ω= 由12L L =求得:04ωω= (2)拉力作功:2222110000113222W J J mr ωωω=-=3.29质量为0.50 kg ,长为0.40 m 的均匀细棒,可绕垂直于棒的一端的水平轴转动.如将此棒放在水平位置,然后任其落下,如题3-29图所示,求:(1) 当棒转过60°时的角加速度和角速度;(2) 下落到竖直位置时的动能;(3) 下落到竖直位置时的角速度. 解:设杆长为l ,质量为m(1) 由同转动定理有:232123lmg sin g sin MJml lθθα===代入数据可求得:21838.rad s α-=⋅由刚体定轴转动的动能定理得:2211223l mg cos ml θω=ω=17978.rad s ω-=⋅(也可以用转动定理求得角加速度再积分求得角速度)(2)由刚体定轴转动的动能定理得:k W E =∆ 059802098k E mgh ....J ==⨯⨯= (3)18573.rad s ω-===⋅3-30 如题3-30图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的转动惯量J 1 =10.0 kg· m 2 ,开始时B 轮静止,A 轮以n 1 =600 r· min -1 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到两轮的转速都等于n =200 r· min -1 为止.求:(1) B 轮的转动惯量;(2) 在啮合过程中损失的机械能.解:研究对象:A 、B 系统在衔接过程中, 对轴无外力矩作用,故有常矢=L()121122J J J J ωωω⇒+=+即: 1122J ()J ωωωω-=-代入数据可求得:2220J kg m =⋅(2)()2221122121122k E (J J )J J ωωω∆=+-+ 代入数据可求得: 413210k E .J ∆=-⨯,负号表示动能损失(减少)。